Skip to main content

Advertisement

Log in

Assessment of concentration in contaminated soil by potentially toxic elements using electrical properties

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soils contaminated by potentially toxic elements (PTEs) which affect human health, such as zinc, lead, mercury, cadmium, and arsenic, were applied. The aims of this study are to judge contamination of soil and also to evaluate concentration of contaminated soil using electrical properties such as electrical resistivity and permittivity. The frequency was applied in the experiment ranged from 100 Hz to 10 MHz. As a result, the values of electrical resistivity and permittivity of each soil contaminated by PTEs could be presented as a function related to frequency and could determine whether the soil was contaminated. Also, results indicated that electrical properties give a reliable estimation of concentrations of PTEs contamination in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agilent Technology (2000). Impedance measurement handbook (2nd ed.). Santa Clara: Agilent.

    Google Scholar 

  • Arulanandan, K., & Muraleetharan, K. (1988). Level ground soil-liquefaction analysis using in-situ properties:1. Journal of Geotechnical Engineering, 114(7), 753–770.

    Article  Google Scholar 

  • ASTM D150 (1994). Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation. ASTM D150–94, Philadelphia.

  • Farmer, J. G., & Eades, L. J. (1996). Stable lead isotope record of lead pollution in Loch Lomond sediments since 1630 A.D. Environmental Science and Technology, 30, 3080–3083.

    Article  CAS  Google Scholar 

  • Gelinas, Y., & Schmit, J. P. (1997). Extending the use of the stable lead isotope ratios as a tracer in bioavailability study. Environmental Science and Technology, 31, 1968–1972.

    Article  CAS  Google Scholar 

  • Gross, G. W., & McGehee, R. M. (1988). The layered-capacitor method for bridge measurements of conductive dielectrics. IEEE Transactions on Electrical Insulation, 23, 387–396.

    Article  CAS  Google Scholar 

  • Hansmann, W., & Koppel, V. (2000). Lead-isotopes as tracers of pollutants in soils. Chemical Geology, 171, 123–144.

    Article  CAS  Google Scholar 

  • Harrison, R. M., & Willson, S. J. (1985). The chemical composition of highway drainage water 1- Major ions and selected trace metals. Science of the Total Envirionmental, 43, 63–77.

    Article  CAS  Google Scholar 

  • Helmke, P. A. (1996). Neutron activation analysis, methods of soil analysis. Part 3: Chemical methods (pp. 141–160). Madison: Soil Science Society of America.

    Google Scholar 

  • Hill, N. E., Vaughan, W. E., Price, A. H., & Davies, M. (1969). Dielectric properties and molecular behaviour. London: Reinhold.

    Google Scholar 

  • Karathanasis, A. D., & Hajek, B. F. (1996). Elemental analysis by X-ray fluorescence, methods of soil analysis. Part 3: Chemical methods (pp. 161–224). Madison: Soil Science Society of America.

    Google Scholar 

  • Kaya, A., Lovell, C. W., & Altschffel, G. A. (1994). The effective use of time domain reflectometry(TDR) in geotechnical engineering. In Proc., symp and workshop on time domain reflectometry in envir., infrastructure and min. application (pp. 398–409). Evanston: Northwestern Univ.

    Google Scholar 

  • Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. Oxford: Pergamon.

    Google Scholar 

  • Marcantonio, F., Flowers, G. C., & Templin, N. (1999). Lead contamination in a wetland watershed: Isotopes as fingerprints of pollution. Environmental Geology, 39(9), 1070–1076.

    Article  Google Scholar 

  • McCarter, W. J. (1984). The electrical resistivity characteristics of compacted clays. Geotechnique, 34(2), 263–267.

    Article  Google Scholar 

  • Mitchell, J. K. (1993). Fundamentals of soil behavior (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Munksgaard, N. C., Batterham, G. J., & Parry, D. L. (1998). Lead isotope ratios determined by ICP-MS: Investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria, Australia. Marine Pollution Bulletin, 36(7), 527–534.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1988). A silent epidemic of environmental metal poisoning? Environmental Pollution, 50, 139–161.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature(London), 333, 134–139.

    Article  CAS  Google Scholar 

  • Oh, M., Kim, Y., & Park, J. (2007). Factors affecting the complex permittivity spectrum of soil at a low frequency range of 1 kHz – 10 MHz. Environmental Geology, 51, 821–833.

    Article  CAS  Google Scholar 

  • Parkhomenko, E. (1967). Electrical properties of rocks (trans: Keller, G. V.). New York: Plenum.

    Google Scholar 

  • Rinaldi, V. A., & Cuestas, G. A. (2002). Ohmic conductivity of a compacted silty clay. Journal of Geotechnical and Geoenvironmental Engineering, 128(10), 824–835.

    Article  Google Scholar 

  • Santamarina, J. C., Klein, K. A., & Fam, M. A. (2001). Soils and waves. New York: Wiley.

    Google Scholar 

  • Scott, J. H., Caroll, R. D., & Cunningham, D. R. (1967). Dielectric constant and electrical conductivity measurements of moist rock: A new laboratory method. Journal of Geophysical Research, 72, 5101–5115.

    Article  Google Scholar 

  • Selig, E. T., & Mansukhani, S. (1975). Relationship of soil moisture to the dielectric property. Journal of the Geotechnical Engineering, ASCE, 101(GT8), 755–770.

    Google Scholar 

  • Smith, S. S., & Arulanandan, K. (1981). Relationship of electrical dispersion to soil properties. Journal of the Geotechnical Engineering, 107, 591–604.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Seqeuntial extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Thevanayagam, S. (1993). Electrical response of two-phase soil: Theory and applications. Journal of the Geotechnical Engineering, 119(8), 1250–1275.

    Article  Google Scholar 

  • Thevanayagam, S. (1995). Envirionmental soil characterization using electric dispersion. In Proc., ASCE spec. conf. of the geoenvirionment 2000, N. Y. (pp. 137–150). New York: ASCE.

    Google Scholar 

  • Thornton, I. (1993). Environmental geochemistry and health in the 1990s: A global perspective. Applied Geochemistry, Suppl, 2, 203–210.

    Article  Google Scholar 

  • Ward, S. (1990). Resistivity and induced-polarization methods. In S. Ward (Ed.) Geotechnical and enviromental geophys 1 (pp. 147–190).

  • Wong, C. S. C., & Li, X. (2003). Analysis of heavy metal contaminated soils. Practice Peridical of Hazardous, Toxic, and Radioactive Waste Management, 7(1), 12–18.

    Article  CAS  Google Scholar 

  • Yoon, G. L., Oh, M. H., & Park, J. B. (2002). Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer. Environmental Geology, 43, 18–28.

    Article  CAS  Google Scholar 

  • Yoon, G. L., & Park, J. B. (2001). Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soil. Journal of Hazardous Materials, B84, 147–161.

    Article  Google Scholar 

  • Zhu, B. Q., Chen, Y. W., & Peng, J. H. (2001). Lead isotope geochemistry of the urban environment in the Pearl River Delta. Applied Geochemistry, 16, 409–417.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghwan Son.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material (ESM)

(DOC 133 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, Y. Assessment of concentration in contaminated soil by potentially toxic elements using electrical properties. Environ Monit Assess 176, 1–11 (2011). https://doi.org/10.1007/s10661-010-1562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1562-9

Keywords

Navigation