Skip to main content

Advertisement

Log in

Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Profiles of the bioaccessibility of soil polycyclic aromatic hydrocarbons (PAHs) in different urban functional areas of Xiamen City, Fujian, China were investigated. A physiologically based in vitro test was used to evaluate the bioaccessibility of total and individual PAHs. There was no obvious correlation between total concentrations of PAHs and bioaccessibility during the gastrointestinal phase for the soils from different functional areas. Results showed that the bioaccessibility variation in the gastrointestinal phase (ranging from 14.6% to 63.2%) was significantly higher than that in the gastric phase (ranging from 4.9% to 21.8%). The bioaccessibility in the gastrointestinal phase was not only determined by soil organic materials but also directly related to physical and chemical properties of individual PAHs, except for two-ring PAHs. Increasing soil organic material content or decreasing ring numbers of PAHs could result in the decrease of PAH bioaccessibility. The total PAH bioaccessibility was largely contributed by individual PAHs with relatively high molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin, S., & Farant, J. P. (2000). Benzo[b]fluoranthene, a potential alternative to benzo[a]pyrene as an indicator of exposure to airborne PAHs in the vicinity soderberg aluminum smelters. Journal of the Air & Waste Management Association, 50(12), 2093–2101.

    CAS  Google Scholar 

  • Calabrese, E. J., Stanek, E. J., James, R. C., & Roberts, S. M. (1997). Soil ingestion: A concern for acute toxicity in children. Environmental Health Perspectives, 105(12), 1354–1358. doi:10.2307/3433755.

    Article  CAS  Google Scholar 

  • Chiou, C. T., McGroddy, S. E., & Kile, D. E. (1998). Partition characteristics of polycyclic aromatic hydrocarbons on soil and sediments. Environmental Science & Technology, 32(2), 264–269. doi:10.1021/es970614c.

    Article  CAS  Google Scholar 

  • Chung, N., & Alexander, M. (2002). Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere, 48(1), 109–115. doi:10.1016/S0045-6535(02)00045-0.

    Article  CAS  Google Scholar 

  • Collins, J. F., Brown, J. P., Alexeeff, G. V., & Salmon, A. G. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology, 28(1), 45–54. doi:10.1006/rtph.1998.1235.

    Article  CAS  Google Scholar 

  • De Vries, W., & Bakker, D. J. (1998). Manual for calculating critical loads of heavy metals for terrestrial ecosystem: Guidelines for critical limits, calculation methods and input data (pp. 144–146). Wageningen, The Netherlands: TNO Institute of Environmental Sciences.

  • Dean, J. R., & Ma, R. (2007). Approaches to assess the oral bioaccessibility of persistent organic pollutions: A critical review. Chemosphere, 68(8), 1399–1407. doi:10.1016/j.chemosphere.2007.03.054.

    Article  CAS  Google Scholar 

  • Ghosh, U., Gillette, J. S., Luthy, R. G., & Zare, R. N. (2000). Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Environmental Science & Technology, 34(9), 1729–1736. doi:10.1021/es991032t.

    Article  CAS  Google Scholar 

  • Hack, A., & Selenka, F. (1996). Mobilization of PAH and PCB from contaminated soil using a digestive tract model. Toxicology Letters, 88(1–3), 199–210. doi:10.1016/0378-4274(96)03738-1.

    Article  CAS  Google Scholar 

  • Harkey, G. A., Lydy, M. J., Kukkonen, J., & Landrum, P. F. (1994). Feeding selectivity and assimilation of PAH and PCB in Diporeia spp. Environmental Toxicology and Chemistry, 13(9), 1445–1455. doi:10.1897/1552-8618(1994)13[1445:FSAAOP]2.0.CO;2.

    CAS  Google Scholar 

  • Holman, H. N., Goth-Goldstein, R., Aston, D., Yun, M., & Kengsoontra, J. (2002). Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model. Environmental Science & Technology, 36(6), 1281–1286. doi:10.1021/es010987k.

    Article  CAS  Google Scholar 

  • Jin, Z. W., Simkins, S., & Xing, B. S. (1999). Bioavailability of freshly added and aged Naphthalene in soils under gastric pH condition. Environmental Toxicology and Chemistry, 18(12), 2751–2758. doi:10.1897/1551-5028(1999)018<2751:BOFAAA>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Johnsen, A. R., & Karlson, U. (2007). Diffuse PAH contamination of surface soils: Environmental occurrence, bioavailability, and microbial degradation. Applied Microbiology and Biotechnology, 76(3), 533–543. doi:10.1007/s00253-007-1045-2.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Lin, A., & Zhu, Y. (2008). Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test. Environmental Science and Pollution Research, 15(4), 344–353. doi:10.1007/s11356-008-0004-5.

    Article  Google Scholar 

  • Li, C. T., Lin, Y. C., Lee, W. J., & Tsai, P. (2003). Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking source to the urban atmosphere. Environmental Health Perspectives, 111(4), 483–487.

    CAS  Google Scholar 

  • Lu, M., Yuan, D., Li, Q., & Ouyang, T. (2009). Application of response surface methodology to analyze the effects of soil/liquid ratio, pH and incubation time on the bioaccessibility of PAHs from soil in in vitro method. Water, Air, and Soil Pollution. doi:10.1007/s11270-008-9920-8.

  • Miller, M. M., Wasik, S. P., Huang, G. L., Shiu, W. Y., & Mackay, D. (1985). Relationships between octanol–water partition coefficient and aqueous solubility. Environmental Science & Technology, 19(6), 522–529. doi:10.1021/es00136a007.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommer, L. E. (1982). Total carbon, organic carbon and organic matter. Method of soil analysis. Chemical and microbiological properties (pp. 539–579). Madison, USA: American Society of Agronomy.

    Google Scholar 

  • Oomen, A. G., Slips, A. J. A. M., Groten, J. P., Sijm, D. T. H. M., & Tolls, J. (2000). Mobilization of PCBs and Lindan from soil during in vitro digestion and their distribution among bile salt micelles and proteins of human digestive fluid and the soil. Environmental Science & Technology, 34(2), 297–303. doi:10.1021/es990446j.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion model to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36(15), 3326–3334. doi:10.1021/es010204v.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Rompelberg, C. J. M., Kamp, E. V., Perehoom, D. P. K. H., Zwart, L. L. D., & Sips, A. J. A. M. (2004). Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model. Archives of Environmental Contamination and Toxicology, 46(2), 183–188.

    CAS  Google Scholar 

  • Pan, B., Xing, B., Tao, S., Liu, W., Lin, X., Xiao, Y., et al. (2007). Effect of physical forms of soil organic matter on phenanthrene sorption. Chemosphere, 68(7), 1262–1269. doi:10.1016/j.chemosphere.2007.01.054.

    Article  CAS  Google Scholar 

  • Pu, X., Lee, L. S., Galinsky, R. E., & Carlson, G. P. (2004). Evaluation of a rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils. Toxicological Sciences, 79(1), 10–17. doi:10.1093/toxsci/kfh091.

    Article  CAS  Google Scholar 

  • Rastall, A. C., Neziri, A., Vukovic, Z., Jung, C., Mijovic, S., Hollert, H., et al. (2004). The identification of readily bioavailable pollutants in Lake Shkodra/ Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis. Environmental Science and Pollution Research, 11(4), 240–253. doi:10.1007/BF02979632.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R., Freeman, G. B., et al. (1993). Development of an in vitro screening test to evaluate the in vitro bioaccessibility of ingested mine-waste lead. Environmental Science & Technology, 27(13), 2870–2877. doi:10.1021/es00049a030.

    Article  CAS  Google Scholar 

  • Tang, X. Y., Tang, L. L., Zhu, Y. G., Xing, B. S., Duan, J., & Zheng, M. H. (2006). Assessment of the bioaccessi bility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environmental Pollution, 140(2), 279–285. doi:10.1016/j.envpol.2005.07.010.

    Article  CAS  Google Scholar 

  • USEPA (1996). Method 3535A. Solid-phase extraction (SPE). http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3535a.pdf.

  • USEPA (1999). Method 3546. Microwave extraction. http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3546.pdf.

  • Van de Wiele, T. R., Verstracete, W., & Siciliano, S. D. (2004). Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract. Journal of Environmental Quality, 33(4), 1343–1353.

    Article  Google Scholar 

  • Vasiluk, L., Pinto, L. J., Walji, Z. A., Tsang, W. S., Gobas, F. A. P. C., Eickhoff, C., et al. (2007). Benzo[a]pyrene bioavailability from pristine soil and contaminated sediment assessed using two in vitro models. Environmental Toxicology and Chemistry, 26(3), 387–393. doi:10.1897/06-343R.1.

    Article  CAS  Google Scholar 

  • Wang, D. G., Yang, M., Jia, H. L., Zhou, L., & Li, Y. F. (2008). Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: An assessment of soil-air exchange. Journal of Environmental Monitoring, 10(9), 1076–1083. doi:10.1039/b805840g.

    Article  CAS  Google Scholar 

  • Wang, Z., Chen, J., Qiao, X., Yang, P., Tian, F., & Huang, L. (2007). Distribution and source of polycyclic aromatic hydrocarbons from urban to rural soil: A case study in Dalian, China. Chemosphere, 68(5), 965–971. doi:10.1016/j.chemosphere.2007.01.017.

    Article  CAS  Google Scholar 

  • Zuo, Q., Duan, Y. H., Yang, Y., Wang, X. J., & Tao, S. (2007). Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China. Environmental Pollution, 147(2), 303–310. doi:10.1016/j.envpol.2006.05.029.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxing Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Yuan, D., Lin, Q. et al. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test. Environ Monit Assess 166, 29–39 (2010). https://doi.org/10.1007/s10661-009-0982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0982-x

Keywords

Navigation