Skip to main content
Log in

Multi-scale spatial structure of heavy metals in agricultural soils in Beijing

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To effectively investigate the spatial variability of heavy metals in soil, produce a higher quality spatial distribution map, and identify the potential pollution sources of heavy metals, geostatistics was employed to evaluate the effect of scale on spatial variability of heavy metals in Beijing agricultural soils. The results revealed that spatial variability of Cr, Ni, Zn, and Hg was dependent on scale. Validation of the optimality of theoretical semivariance and comparative analysis of the estimation accuracy demonstrated that the multi-scale nested model can reveal the spatial structure of heavy metals effectively and improve the estimation accuracy better than the single-scale method, thereby enabling production a higher quality spatial interpolation map. Thus, the multi-scale kriging nested model is a useful tool for revealing spatial variability of heavy metals in soils, while the spatial distribution maps allow the identification of hot spots with high concentrations of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J., & Jackson, A. P. (1991). The behaviour of heavy metals in sewage sludge-amended soils. Science of the Total Environment, 100, 151–176. doi:10.1016/0048-9697(91)90377-Q.

    Article  CAS  Google Scholar 

  • Carlon, C., Critto, A., Marcomini, A., & Nathanail, P. (2001). Risk based characterisation of contaminated industrial site using multivariate and geostatistical tools. Environmental Pollution, 111, 417–427. doi:10.1016/S0269-7491(00)00089-0.

    Article  CAS  Google Scholar 

  • Chen, T. B., Wong, J. W. C., Zhou, H. Y., & Wong, M. H. (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution, 96, 61–68. doi:10.1016/S0269-7491(97)00003-1.

    Article  CAS  Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., et al. (2005). Assessment of heavy metal pollution in surface soil of urban parks in Beijing, China. Chemosphere, 60, 542–551. doi:10.1016/j.chemosphere.2004.12.072.

    Article  CAS  Google Scholar 

  • Davis, B. M. (1987). Uses and abuses of cross-validation in geostatistics. Mathematical Geology, 19, 241–248. doi:10.1007/BF00897749.

    Article  Google Scholar 

  • De Temmerman, L., Vanongeval, L., Boon, W., Hoenig, M., & Geypens, M. (2003). Heavy metal content of arable soils in Northern Belgium. Water, Air, and Soil Pollution, 148, 61–76. doi:10.1023/A:1025498629671.

    Article  Google Scholar 

  • Engle, M. A., Gustin, M. S., Lindberg, S. E., Gertler, A. W., & Ariya, P. A. (2005). The influence of ozone on atmospheric emissions of gaseous elemental mercury and relative gaseous mercury from substrates. Atmospheric Environment, 39, 7506–7517. doi:10.1016/j.atmosenv.2005.07.069.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324. doi:10.1016/S0269-7491(00)00243-8.

    Article  CAS  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation (512 pp.). USA: Oxford University Press.

    Google Scholar 

  • Hu, K. L., Zhang, F. R., Li, H., Huang, F., & Li, B. G. (2006). Spatial patterns of soil heavy metals in Urban-rural transition zone of Beijing. Pedosphere, 16, 690–698. doi:10.1016/S1002-0160(06)60104-5.

    Article  CAS  Google Scholar 

  • Huo, X. N., Li, H., Sun, D. F., Li, B. G., & Zhou, L. D. (2009). Status assessment of heavy metals in Beijing agricultural soils. Journal of Agro-Environment Science, 28, 66–71, (in Chinese, with English abstract).

    CAS  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics (pp. 278–364). New York: Oxford University Press.

    Google Scholar 

  • Jung, M. C. (2001). Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea. Applied Geochemistry, 16, 1369–1375. doi:10.1016/S0883-2927(01)00040-3.

    Article  CAS  Google Scholar 

  • Kashem, M. A., & Singh, B. R. (2001). Metal availability in contaminated soils: I. Effect of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems, 61, 247–255. doi:10.1023/A:1013762204510.

    Article  CAS  Google Scholar 

  • Keller, A., Von Steiger, B., Van der Zee, S. E. A. T. M., & Schulin, R. (2001). A stochastic empirical model for regional heavy-metal balances in agroecosystems. Journal of Environmental Quality, 30, 1976–1989.

    CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692. doi:10.1016/j.envpol.2007.06.056.

    Article  CAS  Google Scholar 

  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52, 119–139.

    Google Scholar 

  • Li, B. G., Hu, K. L., Chen, D. L., & White, R. E. (2002). Conditional simulation of soil surface saturated hydraulic conductivity at field scale. Journal of Hydraulic Engineering, 2, 36–41, (in Chinese, with English abstract).

    Google Scholar 

  • Li, J. H., Lu, Y., Yin, W., Gan, H. H., Zhang, C., Deng, X. L., et al. (2008). Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China. Environmental Monitoring and Assessment. doi:10.1007/s10661-008-0363-x.

    Google Scholar 

  • Liao, H. J. (2007). Investigation and assessment of pollution of heavy metals in the soil of the upstream of Miyun reservoir, Beijing. Analysis Research, 2, 31–34, (in Chinese, with English abstract).

    Google Scholar 

  • Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Soderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 30, 805–812. doi:10.1016/j.envint.2005.05.042.

    Article  CAS  Google Scholar 

  • Liu, X. M., Wu, J. J., & Xu, J. M. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141, 257–264. doi:10.1016/j.envpol.2005.08.048.

    Article  CAS  Google Scholar 

  • Mallarino, A. P. (1996). Spatial variability patterns of phosphorus and potassium in no-tilled soils for two sampling scales. Soil Science Society of America Journal, 60, 1473–1481.

    CAS  Google Scholar 

  • Mantovi, P., Bonazzi, G., Maestri, E., & Marmiroli, N. (2003). Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant and Soil, 250, 249–257. doi:10.1023/A:1022848131043.

    Article  CAS  Google Scholar 

  • McGrath, D., Zhang, C. S., & Carton, O. W. (2004). Geostatistical analyses and hazard assessment on soil lead in Slivermines areas, Ireland. Environmental Pollution, 127, 239–248. doi:10.1016/j.envpol.2003.07.002.

    Article  CAS  Google Scholar 

  • Miller, J. R., Lechler, P. J., & Bridge, G. (2003). Mercury contamination of alluvial sediments within the Essequibo and Mazaruni river basins, Guyana. Water, Air, and Soil Pollution, 148, 139–166. doi:10.1023/A:1025465800121.

    Article  CAS  Google Scholar 

  • Muchuweti, M., Birkett, J. W., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., & Lester, J. N. (2006). Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agriculture, Ecosystems & Environment, 112, 41–48. doi:10.1016/j.agee.2005.04.028.

    Article  CAS  Google Scholar 

  • Nan, Z. R., Zhao, C. Y., Li, J. J., Chen, F. H., & Sun, W. (2002). Relation between soil properties and selected heavy metal concentrations in spring wheat (Triticum aestivum L.) grown in contaminated soil. Water, Air, and Soil Pollution, 133, 205–213. doi:10.1023/A:1012962604095.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1990). Global metal pollution: Poisoning the biosphere? Environment, 32, 28–33.

    Google Scholar 

  • Oliver, M. A. (1992). Geostatistical methods: Recent development and applications in surface hydrology: Some novel geostatistical application in soil science. Paris: UNESCO.

    Google Scholar 

  • Reimann, C., & De Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107. doi:10.1016/j.scitotenv.2004.06.011.

    Article  CAS  Google Scholar 

  • Rodríguez, J. A., Nanos, N., Grau, J. M., Gil, L., & López-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70, 1085–1096. doi:10.1016/j.chemosphere.2007.07.056.

    Article  CAS  Google Scholar 

  • Santra, P., Chopra, U. K., & Chakraborty, D. (2008). Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in an agricultural farm. Current Science, 95, 937–945.

    CAS  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Heavy metal (Cu, Zn, Cd and Pb) concentration of vegetables in urban India: A case study in Varanasi. Environmental Pollution, 154, 254–263. doi:10.1016/j.envpol.2007.10.010.

    Article  CAS  Google Scholar 

  • State Environmental Protection Administration of China (1995). Chinese environmental quality standard for soils (GB 15618-1995), (in Chinese).

  • Sylla, M., Stein, A., van Breemen, N., & Fresco, L. O. (1995). Spatial variability of soil salinity at different scales in the mangrove rice agro-ecosystem in West Africa. Agriculture Ecosystems & Environment, 54, 1–15. doi:10.1016/0167-8809(95)00594-I.

    Article  Google Scholar 

  • Voltz, M., & Webster, R. (1990). A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. European Journal of Soil Science, 41, 473–490.

    Article  Google Scholar 

  • Wang, Z. Q. (1999). Geostatistics and its application in ecology (pp. 162–192). Beijing: Science Press, (in Chinese).

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Wiley: Chichester.

    Google Scholar 

  • Wu, J. G. (2004). Effects of changing scale on landscape pattern analysis: Scaling relations. Landscape Ecology, 19, 125–138. doi:10.1023/B:LAND.0000021711.40074.ae.

    Article  Google Scholar 

  • Xu, Y., Chen, Y. X., Shi, H. B., & Wei, Z. M. (2004). Scale effect of spatial variability of soil water-salt. Transaction of the CASE, 20, 1–5, (in Chinese, with English abstract).

    Google Scholar 

  • Zhang, C. S., & Selinus, O. (1997). Spatial analyses for copper, lead and zinc contents in sediments of the Yangtze River basin. Science of the Total Environment, 204, 251–262. doi:10.1016/S0048-9697(97)00171-X.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huo Xiaoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiaoni, H., Hong, L., Danfeng, S. et al. Multi-scale spatial structure of heavy metals in agricultural soils in Beijing. Environ Monit Assess 164, 605–616 (2010). https://doi.org/10.1007/s10661-009-0916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0916-7

Keywords

Navigation