Skip to main content
Log in

Permanent sample plots for natural tropical forests: A rationale with special emphasis on Central Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Permanent sample plots (PSP), where trees are individually and permanently marked, have received increased interest in Central Africa as a tool to monitor vegetation changes. Although techniques for mounting PSP in tropical forests are well known, their planning still deserves attention. This study aims at defining a rationale for determining the size and number of replicates for setting up PSP in mixed tropical forests. It considers PSP as a sampling plan to estimate a target quantity with its associated margin of error. The target quantity considered here is the stock recovery rate, which is a key parameter for forest management in Central Africa. It is computed separately for each commercial species. The number of trees to monitor for each species defines the margin of error on the stock recovery rate. The size and number of replicated plots is obtained as the solution of an optimization problem that consists in minimizing the margin of error for every species while ensuring that the mounting cost remains below a given threshold. This rationale was applied using the data from the M’Baïki experimental site in the Central African Republic. It showed that the stock recovery rate is a highly variable quantity, and that the typical cost that forest managers are prone to devote to PSP leads to high margins of error. It also showed that the size and number of replicated plots is related to the spatial pattern of trees: clustered or spatially heterogeneous patterns favor many small plots, whereas regular or spatially homogeneous patterns favor few large plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder, D., & Synnott, T. J. (1992). Permanent sample plot techniques for mixed tropical forest. Tropical Forestry Papers 25, Oxford Forestry Institute, University of Oxford, Oxford.

  • Baker, T. R., Affum-Baffoe, K., Burslem, D. F. R. P., & Swaine, M. D. (2002). Phenological differences in tree water use and the timing of tropical forest inventories: Conclusions from patterns of dry season diameter change. Forest Ecology and Management, 171, 261–274.

    Article  Google Scholar 

  • Bakker, J. P., Olff, H., Willems, J. H., & Zobel, M. (1996). Why do we need permanent plots in the study of long-term vegetation dynamics? Journal of Vegetation Science, 7, 147–155.

    Article  Google Scholar 

  • Bedel, F., Durrieu de Madron, L., Dupuy, B., Favrichon, V., Maître, H. F., Bar-Hen, A., & Narboni, P. (1998). Dynamique de croissance dans les peuplements exploités et éclaircis de forêt dense africaine: Dispositif de M’Baïki en République Centrafricaine (1982–1995). Montpellier: CIRAD-Forêt.

    Google Scholar 

  • Caswell, H. (2001). Matrix population models: Construction, analysis and interpretation. Sunderland: Sinauer.

    Google Scholar 

  • Chagneau, P., Mortier, F., & Picard, N. (2009). Designing permanent sample plots using a spatially hierarchical matrix population model. Journal of the Royal Statistical Society, Series C (Applied Statistics), 58(3) (in press).

  • Condit, R. (1998). Tropical forest census plots: Methods and results from Barro C olorado Island, P anama and a comparison with other plots. Berlin: Springer.

    Google Scholar 

  • Condit, R., Ashton, P. S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., et al. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414–1418.

    Article  CAS  Google Scholar 

  • Cressie, N. (1993). Statistics for spatial data. New York: Wiley.

    Google Scholar 

  • Croisé, L., & Fabbri, B. (1991). Les tâches naturelles d’okoumé au Congo (massif du Chaillu), dispositif d’étude et évolution selon des interventions sylvicoles simples, résultats préliminaires. Rapport technique, CIRAD-CTFT, Nogent-sur-Marne.

  • Dallmeier, F. (1992). Long-term monitoring of biological diversity in tropical forest areas. Methods for establishment and inventory of permanent plots. Paris: UNESCO.

    Google Scholar 

  • Durrieu de Madron, L., Forni, E., Karsenty, A., Loffeier, E., & Pierre, J. M. (1998). Le projet d’aménagement pilote intégré de Dimako, Cameroun, 1992-1996. Montpellier: CIRAD-Forêt.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

    Google Scholar 

  • Forman, R. T. T., & Hahn, D. C. (1980). Spatial patterns of trees in a caribbean semievergreen forest. Ecology, 61, 1267–1274.

    Article  Google Scholar 

  • Gentry, A. H. (1992). Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos, 63, 19–28.

    Article  Google Scholar 

  • Kubo, T., Kohyama, T., Potts, M. D., & Ashton, P. S. (2000). Mortality rate estimation when inter-census intervals vary. Journal of Tropical Ecology, 16, 753–756.

    Article  Google Scholar 

  • Lahti, T., & Ranta, E. (1985). The SLOSS principle and conservation practice: an example. Oikos, 44, 369–370.

    Article  Google Scholar 

  • Laurance, W. F., Oliveira, A. A., Laurance, S. G., Condit, R., Nascimento, H. E. M., Sanchez-Thorin, A. C., et al. (2004). Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature, 428, 171–175.

    Article  CAS  Google Scholar 

  • Leal, M. E. (2006). The biodiversity of Mont Kinguié: Preliminary results and observations. Tech. rep., Missouri Botanical Garden, St. Louis.

  • Lejoly, J. (2000). Les recherches sur la biodiversité végétale dans les 6 sites du programme Ecofac entre 1997 et 2000. Rapport final de synthèse, projet ECOFAC, 2e phase, Groupement AGRECO-GEIE, Bruxelles.

  • Lejoly, J., Sonké, B., & Van Essche, K. (1996). Utilisation de la méthode du transect en vue de l’étude de la biodiversité dans la réserve de faune du Dja (Cameroun). In L. J. G. van der Maesen, X. M. van der Burgt, & J. M. van Medenbach de Rooy (Eds.), The biodiversity of African plants (pp. 150–154). Dordrecht: Kluwer.

    Google Scholar 

  • Lewis, S. L., Phillips, O. L., Baker, T. R., Lloyd, J., Malhi, Y., Almeida, S., et al. (2004a). Concerted changes in tropical forest structure and dynamics: Evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London, Series B, 359, 421–436.

    Article  CAS  Google Scholar 

  • Lewis, S. L., Malhi, Y., & Phillips, O. L. (2004b). Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society, Series B, 359, 437–462.

    Article  CAS  Google Scholar 

  • Lewis, S. L., Phillips, O. L., Sheil, D., Vinceti, B., Baker, T. R., Brown, S., et al. (2004c). Tropical forest tree mortality, recruitment and turnover rates: Calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 92, 929–944.

    Article  Google Scholar 

  • Lohr, S. L. (1999). Sampling: Design and analysis. Pacific Grove: Duxbury.

    Google Scholar 

  • Losos, E. C., & Leigh, E. G. J., (Eds.) (2004). Tropical forest diversity and dynamism: findings from a large-scale plot network. Chicago: University of Chicago Press.

    Google Scholar 

  • Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., et al. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5, 253–260.

    Article  Google Scholar 

  • Magnussen, S. (2001). Fast pre-survey computation of the mean spatial autocorrelation in large plots composed of a regular array of secondary sampling units. Mathematical Modelling and Scientific Computing, 13, 204–217.

    Google Scholar 

  • Makana, J. R., & Thomas, S. C. (2006). Impacts of selective logging and agricultural clearing on forest structure, floristic composition and diversity, and timber tree regeneration in the Ituri Forest, Democratic Republic of Congo. Biodiversity and Conservation, 15, 1375–1397.

    Article  Google Scholar 

  • Manokaran, N., Lafrankie, J. V., Kochummen, K. M., Quah, E. S., Klahn, J. E., Ashton, P. S., et al. (1990). Methodology for the fifty hectare plot at Pasoh F orest Reserve. Tech. rep., Forest Research Institute of Malaysia, Kuala Lumpur, Malaysia.

  • Pélissier, R., & Pascal, J. P. (2000). Two-year tree growth patterns investigated from monthly girth records using dendrometer bands in a wet evergreen forest in India. Journal of Tropical Ecology, 16, 429–446.

    Article  Google Scholar 

  • PFBC (2006). Les forêts du bassin du Congo: état des forêts 2006. Yaoundé, Cameroun: Partenariat pour les Forêts du Bassin du Congo.

  • Phillips, O. L., Baker, T. R., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, W. F., et al. (2004). Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society, Series B, 359, 381–407.

    Article  CAS  Google Scholar 

  • Phillips, O. L., Malhi, Y., Vincenti, B., Baker, T., Lewis, S. L., Higuchi, N., et al. (2002). Changes in growth of tropical forests: Evaluating potential biases. Ecological Applications, 12, 576–587.

    Article  Google Scholar 

  • Phillips, O. L., Vásquez Martínez, R., Núñez Vargas, P., Monteagudo, A. L., Chuspe Zans, M. E., Galiano Sánchez, W., et al. (2003). Efficient plot-based floristic assessment of tropical forests. Journal of Tropical Ecology, 19, 629–645.

    Article  Google Scholar 

  • Picard, N., & Bar-Hen, A. (2002). La corrélation spatiale entre la surface terrière des arbres et leur accroissement est-elle un bon indicateur de la compétition? Annals of Forest Science, 59, 41–51.

    Article  Google Scholar 

  • Picard, N., & Bar-Hen, A. (2007). Estimation of the density of a clustered point pattern using a distance method. Environmental and Ecological Statistics, 14, 341–353.

    Article  Google Scholar 

  • Picard, N., & Gourlet-Fleury, S. (2008). Manuel de référence pour l’installation de dispositifs permanents en forêt de production dans le Bassin du Congo. Yaoundé, Cameroun: COMIFAC.

    Google Scholar 

  • Picard, N., Mortier, F., & Chagneau, P. (2008a). Influence of estimators of the vital rates in the stock recovery rate when using matrix models for tropical rainforests. Ecological Modelling, 214, 349–360.

    Article  Google Scholar 

  • Picard, N., Yalibanda, Y., Namkosserena, S., & Baya, F. (2008b). Estimating the stock recovery rate using matrix models. Forest Ecology and Management, 255, 3597–3605.

    Article  Google Scholar 

  • Poso, S. (2007). Change monitoring with permanent sample plots. In A. Kangas & M. Maltamo (Eds.), Forest inventory, methodology and applications (pp. 65–84). Amsterdam: Springer.

    Google Scholar 

  • Priyadi, H., Gunarso, P., & Kanninen, M. (Eds.) (2006). Permanent sample plots. More than just forest data. Bogor: CIFOR.

    Google Scholar 

  • Ranneby, B., & Rovainen, E. (1995). On the determination of time intervals between remeasurements of permanent plots. Forest Ecology and Management, 71, 195–202.

    Article  Google Scholar 

  • Sheil, D. (1995a). A critique of permanent plot methods and analysis with examples from Budongo Forest, Uganda. Forest Ecology and Management, 77, 11–34.

    Article  Google Scholar 

  • Sheil, D. (1995b). Evaluating turnover in tropical forests. Science, 268, 894–895.

    Article  CAS  Google Scholar 

  • Sheil, D. (1997). Long-term growth and rainfall in a Ugandan moist forest: Seasonal rhythms and flexing stems. Commonwealth Forestry Review, 76, 121–127.

    Google Scholar 

  • Sheil, D., & May, R. M. (1996). Mortality and recruitment rate evaluations in heterogeneous tropical forests. Journal of Ecology, 84, 91–100.

    Article  Google Scholar 

  • Sheil, D., Burslem, D. F. R. P., & Alder, D. (1995). The interpretation and misinterpretation of mortality rate measures. Journal of Ecology, 83, 331–333.

    Article  Google Scholar 

  • Shiver, B. D., & Borders, B. E. (1996). Sampling techniques for forest ressource inventory. New York: Wiley.

    Google Scholar 

  • Stadt, J. J., Schieck, J., & Stelfox, H. A. (2006). Alberta biodiversity monitoring program—Monitoring effectiveness of sustainable forest management planning. Environmental Monitoring and Assessment, 121, 33–46.

    Article  Google Scholar 

  • Stephenson, N. L., & van Mantgem, P. J. (2005). Forest turnover rates follow global and regional patterns of productivity. Ecology Letters, 8, 524–531.

    Article  Google Scholar 

  • Stoyan, D., & Penttinen, A. (2000). Recent applications of point process methods in forestry statistics. Statistical Science, 15, 61–78.

    Article  Google Scholar 

  • Stoyan, D., & Stoyan, H. (1994). Fractals, random shapes and point fields. Chichester: Wiley.

    Google Scholar 

  • Strayer, D., Glitzenstein, J. S., Jones, C. G., Kolasa, J., Likens, G. E., McDonnell, M. J., et al. (1986). Long-term ecological studies: An illustrated account of their design, operation, and importance to ecology. Occasional publication 2. Millbrook: Institute of Ecosystem Studies.

    Google Scholar 

  • Vanclay, J. K. (1991). Data requirements for developing growth models for tropical moist forest. Commonwealth Forestry Review, 70, 248–271.

    Google Scholar 

  • Vanclay, J. K. (1992). Permanent plots for multiple objectives: Defining goals and resolving conflicts. In H. G. Lund, R. Päivinen, & S. Thammincha (Eds.), Remote sensing and permanent plot techniques for world forest monitoring (pp. 157–163). Pattaya: IUFRO.

    Google Scholar 

  • White, L., & Edwards, A. (2000). Conservation research in the African rain forests: A technical handbook. New York: Wildlife Conservation Society.

    Google Scholar 

  • White, L. J. T. (1996). Étude de la végétation—Rapport final. Projet ECOFAC—composante Gabon, AGRECO / CTFT, Libreville, Gabon.

  • Zeide, B. (1980). Plot size optimization. Forest Science, 26, 251–257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Picard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard, N., Magnussen, S., Banak, L.N. et al. Permanent sample plots for natural tropical forests: A rationale with special emphasis on Central Africa. Environ Monit Assess 164, 279–295 (2010). https://doi.org/10.1007/s10661-009-0892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0892-y

Keywords

Navigation