Skip to main content
Log in

Speciation and ecological risk of heavy metals in intertidal sediments of Quanzhou Bay, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The chemical speciation of nine heavy metals in intertidal sediments from Quanzhou Bay was determined using a modified sequential extraction procedure, proposed by the Commission of the European Community Bureau of Reference. The results show that Mn presents the highest percentage in the acid-soluble fraction, and Pb and Cu present the highest percentages in the reducible fraction. The highest percentages of Fe, V, Cr, Ni, Zn, and Co were found in the residual fraction. The mobility order of the heavy metals studied on the basis of the nonresidual content of the elements is Mn > Pb > Cu > Co > Zn > Ni > Cr > V > Fe. The assessment on potential ecological risk indices of some heavy metals indicates that Zn, Ni, and Cr show moderate contamination, while Cu and Pb show slighter contamination. On the whole, the comprehensive potential ecological risk index of Cu, Zn, Ni, Cr, and Pb in the sediments presents moderate degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamo, P., Arienzo, M., Imperato, M., Naimo, D., & Nardi, G. (2005). Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 61, 800–809. doi:10.1016/j.chemosphere.2005.04.001.

    Article  CAS  Google Scholar 

  • Bougheriet, A., Wartel, M., & Cordier, C. (1994). Chemical speciation of some particulate elements in the English Channel, and impact of human activities on the magnetic behavior of suspended matter. Marine Pollution Bulletin, 28, 541–556. doi:10.1016/0025-326X(94)90074-4.

    Article  Google Scholar 

  • Bruder-Hubscher, V., Lagarde, F., Leroy, M. J. F., & Coughanowr, C. (2002). Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Analytica Chimica Acta, 451, 285–295. doi:10.1016/S0003-2670(01)01403-9.

    Article  CAS  Google Scholar 

  • Caplat, C., Texier, H., & Barillier, D. (2005). Heavy metals mobility inharbour contaminated sediments: the case of Port-en-Bessin. Marine Pollution Bulletin, 50, 504–511. doi:10.1016/j.marpolbul.2004.08.004.

    Article  CAS  Google Scholar 

  • Carral, E., Villares, R., & Puente, X. (1995). Influence of watershed lithology on heavy-metal levels in estuarine sediments and organisms in Galicia (north-west Spain). Marine Pollution Bulletin, 30, 604–608. doi:10.1016/0025-326X(95)00017-H.

    Article  CAS  Google Scholar 

  • Cheng, J., Wu, Z. F., & Liu, P. (2004). Pollution of soil heavy metals and its evaluation with various land utilization in a coastal area of Fujian Provinc. Chinese Journal of Soil Science, 35, 639–642.

    CAS  Google Scholar 

  • Cuong, D. T., & Obbard, J. P. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Applied Geochemistry, 21, 1335–1346. doi:10.1016/j.apgeochem.2006.05.001.

    Article  CAS  Google Scholar 

  • Gan, J. L., Jia, X. P., & Lin, Q. (2000). A primary study on ecological risk caused by the heavy metals in coastal sediments. Journal of Fisheries of China, 24(6), 533–538.

    CAS  Google Scholar 

  • Guevara, S. R., Rizzo, A., & Sanchez, R. (2005). Heavy metal inputs in northern Patagonia lakes from short sediment core analysis. Journal of Radioanalytical and Nuclear Chemistry, 265, 481–493. doi:10.1007/s10967-005-0852-0.

    Article  CAS  Google Scholar 

  • Guevara-Riba, A., Sahuquillo, A., & Rubio, R. (2004). Assessment of metal mobility in dredged harbour sediments from Barcelona, Spain. The Science of the Total Environment, 321, 241–255. doi:10.1016/j.scitotenv.2003.08.021.

    Article  CAS  Google Scholar 

  • Guo, T. Z., DeLaune, R. D., & Patrick, W. H. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23, 305–316. doi:10.1016/S0160-4120(97)00033-0.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control—A sediment logical approach. Water Research, 14, 975–1001. doi:10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., & Armstrong-Altrin, J. S. (2007). Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environmental Pollution, 145, 245–257. doi:10.1016/j.envpol.2006.03.012.

    Article  CAS  Google Scholar 

  • Katherine, F. M., & Christine, M. D. (2003). Comparison of original and modified BCR sequential extraction procedures for the fraction of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478, 111–118. doi:10.1016/S0003-2670(02)01485-X.

    Article  Google Scholar 

  • Kersten, M., & Forstner, U. (1986). Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Science and Technology, 18, 121–130.

    CAS  Google Scholar 

  • Kiratli, N., & Ergin, M. (1996). Partitioning of heavy metals in surface Black Sea sediments. Applied Geochemistry, 11, 775–788. doi:10.1016/S0883-2927(96)00037-6.

    Article  CAS  Google Scholar 

  • Liu, E. F., Shen, J., & Liu, X. Q. (2005). Geochemical features of heavy metals in core sediments of northwestern Taihu Lake, China. Chinese Journal of Geochemistry, 24, 73–81. doi:10.1007/BF02869691.

    Article  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283. doi:10.1016/0012-8252(92)90001-A.

    Article  CAS  Google Scholar 

  • Mason, R. P., Kim, E. H., Cornwell, J., & Heyes, D. (2006). An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Marine Chemistry, 102, 96–110. doi:10.1016/j.marchem.2005.09.021.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442. doi:10.1016/j.chemosphere.2003.10.047.

    Article  CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., & Sahuquillo, A. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61. doi:10.1039/a807854h.

    Article  CAS  Google Scholar 

  • Ross, A. S., & Filip, M. G. T. (2002). Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedures. Analytica Chimica Acta, 454, 249–257. doi:10.1016/S0003-2670(01)01553-7.

    Article  Google Scholar 

  • Sahuquillo, A., Lopez-Sanchez, J. F., Rubio, R., & Rauret, G. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327. doi:10.1016/S0003-2670(98)00754-5.

    Article  CAS  Google Scholar 

  • Takarina, N. D., Browne, D. R., & Risk, M. J. (2004). Speciation of heavy metals in coastal sediments of Semarang, Indonesia. Marine Pollution Bulletin, 49, 854–874. doi:10.1016/j.marpolbul.2004.08.023.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205. doi:10.1016/S0269-7491(99)00310-3.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, Ph., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Analytical Chemistry, 51, 135–151. doi:10.1080/03067319308027619.

    Article  CAS  Google Scholar 

  • Usero, J., Gamero, M., & Morillo, J. (1998). Comparative study of three sequential extraction procedures for metals in marine sediments. Environment International, 24, 487–496. doi:10.1016/S0160-4120(98)00028-2.

    Article  CAS  Google Scholar 

  • Wartel, M., Skiker, M., Auger, Y., Boulghrienta, A., & Puskaric, E. (1991). Seasonal variation of Mn2 +  adsorption on to calcareous surfaces in the English Channel, and its implication on the manganese distribution coefficient. Marine Chemistry, 36, 85–105.

    Article  CAS  Google Scholar 

  • Yuan, J. J., & Xie, J. H. (2003). Survey and appraisal of sea water quality in Quanzhou Bay. Taiwan Strait, 22(1), 14–18.

    Google Scholar 

  • Yuan, C., Shi, J., He, B., Liu, J., & Liang, L. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783. doi:10.1016/j.envint.2004.01.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruilian Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, R., Hu, G. & Wang, L. Speciation and ecological risk of heavy metals in intertidal sediments of Quanzhou Bay, China. Environ Monit Assess 163, 241–252 (2010). https://doi.org/10.1007/s10661-009-0830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0830-z

Keywords

Navigation