Skip to main content

Advertisement

Log in

Application of CMB model for source apportionment of polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area were analyzed by gas chromatography–mass spectrometry. A chemical mass balance (CMB) model developed by the U.S. Environmental Protection Agency (EPA), CMB8.2, was used to apportion sources of PAHs. Seven possible sources, including coal residential, coal power plant, diesel engines exhaust, gasoline engines exhaust, coke oven, diesel oil leaks, and wood burning, were chosen as the major contributors for PAHs in coastal surface sediments. To establish the fingerprints of the seven sources, source profiles were collected from literatures. After including degradation factors, the modified model results indicate that diesel oil leaks, diesel engines exhaust, and coal burning were the three major sources of PAHs. The source contributions estimated by the EPA’s CMB8.2 model were 9.25%, 15.05%, and 75.70% for diesel oil leaks, diesel engines exhaust, and coal burning, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behymer, T. D., & Hites, R. A. (1988). Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash. Environmental Science & Technology, 22(11), 1311–1319. doi:10.1021/es00176a011.

    Article  CAS  Google Scholar 

  • Bzdusek, P. A., & Christensen, E. R. (2004). Source apportionment of sediment PAHs in Lake Calumet, Chicago: Application of factor analysis with nonnegative constraints. Environmental Science & Technology, 38(1), 97–103. doi:10.1021/es034842k.

    Article  CAS  Google Scholar 

  • Christensen, W. F., & Gunst, R. F. (2004). Measurement error models in chemical mass balance analysis of air quality data. Atmospheric Environment, 38(5), 733–744. doi:10.1016/j.atmosenv.2003.10.018.

    Article  CAS  Google Scholar 

  • Friedlander, S. K. (1981). New developments in receptor modeling theory. In E. S. Macias & P. K. Hopke (Eds.), Atmospheric aerosol: Source/air quality relationships (pp. 1–19). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Gordon, G. E. (1988). Receptor models. Environmental Science & Technology, 22(10), 1132–1142. doi:10.1021/es00175a002.

    Article  CAS  Google Scholar 

  • Greenfield, B. K., & Davis, J. A. (2004). A simple mass balance model for PAH fate in the San Francisco Estuary. Oakland, USA: San Francisco Estuary Institute.

    Google Scholar 

  • Gu, S. H., Kralovec, A. C., Christensen, E. R., et al. (2003). Source apportionment of PAHs in dated sediments from the Black River, Ohio. Water Research, 37(9), 2149–2161. doi:10.1016/S0043-1354(02)00584-5.

    Article  CAS  Google Scholar 

  • Kennicutt, M. C., II, Wade, T. L., Presley, B. J., et al. (1994). Sediment contaminants in Casco Bay, Maine: inventories, sources, and potential for biological impact. Environmental Science & Technology, 28(1), 1–15. doi:10.1021/es00050a003.

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels and wood combustion emissions. Atmospheric Environment, 29(4), 533–542. doi:10.1016/1352-2310 (94)00275-P.

    Article  CAS  Google Scholar 

  • Kim, G. B., Maruya, K. A., Lee, R. F., et al. (1999). Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Marine Pollution Bulletin, 38(1), 7–15. doi:10.1016/S0025-326X (98)00077-0.

    Article  CAS  Google Scholar 

  • Li, A., Jang, J. K., & Scheff, P. A. (2003). Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environmental Science & Technology, 37(13), 2958–2965. doi:10.1021/es026309v.

    Article  CAS  Google Scholar 

  • Li, K., Christensen, E. R., Van Camp, R. P., et al. (2001). PAHs in dated sediments of Ashtabula River, Ohio, USA. Environmental Science & Technology, 35(14), 2896–2902. doi:10.1021/es001790f.

    Article  CAS  Google Scholar 

  • Li, Q. (2006). Study on analysis and source apportionment of polycyclic aromatic hydrocarbons on atmospheric particulate of Jinan. Jinan, China: Shandong University (in Chinese).

    Google Scholar 

  • Lin, X. M., Liu, W. X., Chen, J. L., et al. (2005). Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from Bohai Sea, China. Acta Scientiae Circumstantiae, 25(1), 70–75 (in Chinese).

    CAS  Google Scholar 

  • Lin, Z., Mai, B. X., Zhang, G., et al. (1999). Quality assurance/quality control in quantitative analysis of polycyclic aromatic hydrocarbons and organochlorine pesticedes in sediments. Environmental Chemistry, 18(2), 115–121 (in Chinese).

    CAS  Google Scholar 

  • Liu, W. L. (2000). Study on source apportionment of polycyclic aromatic hydrocarbons on atmospheric particles in Tangshan city. Tianjin, China: Nankai University (in Chinese).

    Google Scholar 

  • Mackay, D., & Hickie, B. (2000). Mass balance model of source apportionment, transport and fate of PAHs in Lac Saint Louis, Quebec. Chemosphere, 41(5), 681–692. doi:10.1016/S0045-6535(99)00486-5.

    Article  CAS  Google Scholar 

  • Mackay, D., Shiu, W. Y., Ma, K. C., et al. (1992). Illustrated handbook of physical–chemical properties and environmental fate for organic chemicals. Chelsea, Michigan, USA: Lewis.

    Google Scholar 

  • Neff, J. M. (1979). Polycyclic aromatic hydrocarbons in the aquatic environment: Source, fates and biological effects. London, UK: Applied Science.

    Google Scholar 

  • Nemr, A. E., & Said, T. O., et al. (2007). The distribution and sources of polycyclic aromatic hydrocarbons in surface sediments along the Egyptian Mediterranean coast. Environmental Monitoring and Assessment, 124(1–3), 343–359. doi:10.1007/s10661-006-9231-8.

    Article  CAS  Google Scholar 

  • Pistikopoulos, P., Masclet, P., & Mouvier, G. (1990). A receptor model adapted to reactive species: Polycyclic aromatic hydrocarbons; evaluation of source contributions in an open urban site—I. particle compounds. Atmospheric Environment, 24(5), 1189–1197.

    Google Scholar 

  • Rooney, T. P. (2001). Source apportionment of atmospheric deposition of polycyclic aromatic hydrocarbons at Massachusetts bay using the chemical mass balance model. Lowell, Massachusetts, USA: University of Massachusetts Lowell.

    Google Scholar 

  • Song, C. L., Wang, H., Tu, X. F., et al. (2000). Study on the emission regularities of polycyclic aromatic hydrocarbons from diesel engine. Automobile Technology, 4, 11–13 (in Chinese).

    Google Scholar 

  • Su, M. C., & Christensen, E. R. (1997). Apportionment of source of polychlorinated dibenzo-p-dioxins and dibenzofurans by a chemical mass balance model. Water Research, 31(12), 2935–2948. doi:10.1016/S0043-1354(97)00149-8.

    Article  CAS  Google Scholar 

  • Su, M. C., Christensen, E. R., & Karls, J. F. (1998). Determination of PAH sources in dated sediments from Green Bay, Wisconsin, by a chemical mass balance model. Environmental Pollution, 99(3), 411–419. doi:10.1016/S0269-7491 (97)00182-6.

    Article  CAS  Google Scholar 

  • Su, M. C., Christensen, E. R., Karls, J. F., et al. (2000). Apportionment of polycyclic aromatic hydrocarbon sources in lower Fox River, USA, sediments by a chemical mass balance model. Environmental Toxicology and Chemistry, 19(6), 1481–1490. doi:10.1897/1551-5028 (2000)019<1481:AOPAHS>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Tian, Y., Zheng, T. L., & Wang, X. H. (2004). Concentration, distribution and source of polycyclic aromatic hydrocarbons in surface sediments of Xiamen western harbour. Oceanologia et Limnologia Sinica, 35(1), 15–20 (in Chinese).

    CAS  Google Scholar 

  • U. S. Environmental Protection Agency (2004). CMB8.2 user’s manual. Research Triangle Park, NC: Office of Air Quality Planning and Standards.

    Google Scholar 

  • Yu, G. G., Wang, T. G., & Wu, D. P. (2007). Study on fingerprints of PAHs from the combustion of bavin and coal. Ecology and Environment, 16(2), 285–289 (in Chinese).

    Google Scholar 

  • Zhu, X. L., Liu, W. L., Lu, Y. Y., et al. (2001). Study on the characteristics of PAHs source profile of coal combustion. Research of Environmental Sciences, 14(5), 4–8 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhai Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, L., Lang, Y., Liu, A. et al. Application of CMB model for source apportionment of polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area, China. Environ Monit Assess 163, 57–65 (2010). https://doi.org/10.1007/s10661-009-0816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0816-x

Keywords

Navigation