Skip to main content

Advertisement

Log in

10-Daily soil erosion modelling over sub-Saharan Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil erosion is considered to be one of the greatest environmental problems of sub-Saharan Africa. This paper investigates the advantages and disadvantages of modelling soil erosion at the continental scale and suggests an operational methodology for mapping and quantifying 10-daily water runoff and soil erosion over this scale using remote sensing data in a geographical information system framework. An attempt is made to compare the estimates of this study with general data on the severity of soil erosion over Africa and with measured rates of soil loss at different locations over the continent. The results show that the measured and estimated rates of erosion are in some areas very similar and in general within the same order of magnitude. The importance and the potential of using the soil erosion estimates with simple models and easily accessible free data for various continental-scale environmental applications are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Band, L. (1986). Field parameterisation of an empirical sheet wash transport equation. Catena, 12, 281–290.

    Google Scholar 

  • Batjes, N. H. (1996). Global assessment of land vulnerability to water erosion on a 0.5° by 0.5° grid. Land Degradation and Development, 7, 353–365. doi:10.1002/(SICI)1099-145X(199612)7:4<353::AID-LDR239>3.0.CO;2-N.

    Article  Google Scholar 

  • Beven, K. J., & Kirkby, M. J. (1979). A physically-based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24, 43–69.

    Article  Google Scholar 

  • Blackwell, J. M., Goodwillie, R. N., & Webb, R. (1991). Environment and development in Africa. Washington DC: World Bank Special Report.

    Book  Google Scholar 

  • Brown, L. R., & Wolf, E. C. (1986). Reversing Africa’s decline. Washington DC: Worldwatch Paper 65.

    Google Scholar 

  • Byers, A. C. (1992). Soil loss and sediment transport during the storms and landslides of May 1988 in Ruhengeri prefecture, Rwanda. Natural Hazards, 5, 279–292. doi:10.1007/BF00125232.

    Article  Google Scholar 

  • Carlson, T. N., Capehart, W. J., & Gillies, R. R. (1995). A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54, 161–167. doi:10.1016/0034-4257(95)00139-R.

    Article  Google Scholar 

  • Choudhury, B. J., Ahmed, N. U., Idso, S. B., Reginato, R. J., & Daughtry, C. S. T. (1994). Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment, 50, 1–17. doi:10.1016/0034-4257(94)90090-6.

    Article  Google Scholar 

  • Cihlar, J., & Howarth, J. (1994). Detection and removal of cloud contamination from AVHRR images. IEEE Transactions on Geoscience and Remote Sensing, 32, 583–589. doi:10.1109/36.297976.

    Article  Google Scholar 

  • Cihlar, J., Manak, D., & D’Iorio, M. (1994). Evaluation of compositing algorithms for AVHRR data over land. IEEE Transactions on Geoscience and Remote Sensing, 32, 427–437. doi:10.1109/36.295057.

    Article  Google Scholar 

  • De Ploey, J., Kirkby, M. J., & Ahnert, F. (1991). Hill slope erosion by rainstorms—A magnitude–frequency analysis. Earth Surface Processes and Landforms, 16, 399–409. doi:10.1002/esp.3290160503.

    Article  Google Scholar 

  • De Roo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). LISEM: A single-event physically based hydrological and soil erosion model for drainage basins: I: Theory, input and output. Hydrological Processes, 10, 1107–1117. doi:10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4.

    Article  Google Scholar 

  • Drake, N. A., Zhang, X., Berkhout, E., Bonifacio, R., Grimes, D. I. F., Wainwright, J., et al. (1999). Modelling soil erosion at global and regional scales using remote sensing and GIS techniques. In M. Atkinson & N. J. Tate (Eds.), Advances in remote sensing and GIS analysis (pp. 241–261). Chichester: Wiley.

    Google Scholar 

  • Drake, N. A., Zhang, X., Symeonakis, E., Wooster, M., Patterson, G., & Bryant, R. (2004). Near real-time modelling of regional scale soil erosion using AVHRR and Meteosat data: A tool for monitoring the impact of sediment yield on the biodiversity of Lake Tanganyika. In R. Kelly, N. Drake, & S. Barr (Eds.), Spatial modelling of the terrestrial environment (pp. 175–196). Chichester: Wiley.

    Google Scholar 

  • Eastman, J. R., Kyem, P. A. K., Toledano, J., & Jin, W. (1993). GIS and decision making. Explorations in Geographic Information Systems Technology (Vol. 4, 112 pp.). Geneva: UNITAR European Office.

    Google Scholar 

  • Eklundh, L. (1996). AVHRR NDVI for monitoring and mapping of vegetation and drought in East African environments. Ph.D. Thesis, Lund University Press.

  • Elwell, H. A. (1971). Erosion research programmes in Rhodesia. Harare: Report to the Director of Conex.

    Google Scholar 

  • Elwell, H. A., & Stocking, M. A. (1976). Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma, 15, 61–70. doi:10.1016/0016-7061(76)90071-9.

    Article  Google Scholar 

  • FAO (1990). The Conservation and rehabilitation of African lands: An international scheme. Rome: FAO.

    Google Scholar 

  • FAO (1995). The Digitised soil map of the world including derived soil properties. Version 3.5. FAO land and water digital media series 1. Rome: FAO.

    Google Scholar 

  • Flanagan, D. C., & Livingston, S. J. (1995). WEPP User Summary: USDA-Water Erosion Prediction Project. National Soil Erosion Research Laboratory Report #10, West Lafayette, IN. http://topsoil.nserl.purdue.edu/nserlweb/weppmain/docs/usersum.pdf.

  • Goldman, S. J., Jackson, K., & Bursztynsky, T. A. (1986). Erosion and sediment control handbook. New York: McGraw-Hill.

    Google Scholar 

  • Goudie, A. S. (1996). The physical geography of Africa. Oxford: Oxford University Press.

    Google Scholar 

  • Grimes, D. I. F., Pardo-Igúsquiza, E., & Bonifaçio, R. (1999). Optimal areal estimation using rain gauges and satellite data. Journal of Hydrology (Amsterdam), 222, 93–108. doi:10.1016/S0022-1694(99)00092-X.

    Article  Google Scholar 

  • Gutman, G., Ignatov, A., & Olson, S. (1994). Towards better quality of AVHRR composite images over land: Reduction of cloud contamination. Remote Sensing of Environment, 50, 134–148. doi:10.1016/0034-4257(94)90040-X.

    Article  Google Scholar 

  • Hailey, L. (1938). An African survey. Oxford: Oxford University Press.

    Google Scholar 

  • Herman, A., Kumar, V. B., Arkin, A., & Kousky, J. V. (1997). Objectively determined 10-day African rainfall estimates created for famine early warning systems. International Journal of Remote Sensing, 18, 2147–2159. doi:10.1080/014311697217800.

    Article  Google Scholar 

  • IFAD (1992). Soil and water conservation in sub-Saharan Africa: Towards sustainable production by the rural poor. Report prepared by the Centre for Development Cooperation Services. Rome: International Fund for Agricultural Development.

    Google Scholar 

  • Kirkby, M. J., & Cox, N. J. (1995). A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. Catena, 25, 333–352. doi:10.1016/0341-8162(95)00016-L.

    Article  Google Scholar 

  • König, D. (1992). L’agriculture écologique agroforestière. Une stratégie intégrée de conservation des sols au Rwanda. Bulletin Réseau Erosion, 12, 130–139.

    Google Scholar 

  • Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11, 1405–1419. doi:10.1080/01431169008955102.

    Article  Google Scholar 

  • Lal, R. (1976). Soil erosion problems on an Alfisol in Western Nigeria and their control. IITA Monograph No. 1. Nigeria: Ibadan.

    Google Scholar 

  • Lal, R. (1990). Soil erosion in the tropics: Principles and management. New York: McGraw-Hill.

    Google Scholar 

  • Lee, C. R., & Skogerboe, J. G. (1985). Quantification of erosion control by vegetation on problem soils. In S. A. El-Swaify, W. C. Moldenhauer, & A. Lo (Eds.), Soil erosion and conservation (pp. 437–444). Ankeny: Soil Conservation Society of America.

    Google Scholar 

  • Miller, G. T. (1996). Living in the environment; principles, connections, and solutions. Belmont, California: Wadsworth.

    Google Scholar 

  • Millington, A. C. (1981). Relationship between three scales of erosion measurement on two small basins in Sierra Leone. In Erosion and sediment transport measurement symposium (pp. 485–492). Wallingford: IAHS.

    Google Scholar 

  • Mitchell, J. K., & Bubenzer, G. D. (1980). Soil loss estimation. In M. J. Kirkby & P. C. Morgan (Eds.), Soil erosion (pp. 17–62). Chichester: Wiley.

    Google Scholar 

  • Moeyersons, J. (1990). Soil loss by rain wash: A case study from Rwanda. Zeitschrift fur Geomorphologie, 34, 385–408.

    Google Scholar 

  • Mokrech, M., Drake, N., & Wainwright, J. (2000). The management of uncertainty in geographical information systems based on remote sensing and topographic data. In Remote Sensing Society. proceedings of 26th annual conference at Leicester, September 2000. UK, pp. 12–14.

  • Mokrech, M., Drake, N., & Wainwright, J. (2003). Uncertainty modelling and error propagation in GIS based soil erosion model. In GISRUK conference. proceedings of a conference held at London. 9–11 April 2003. UK.

  • Montgomery, D. R., & Foufoula-Georgiou, E. (1993). Channel network source representation using digital elevation models. Water Resources Research, 29, 3925–3934. doi:10.1029/93WR02463.

    Article  Google Scholar 

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., et al. (1998). The EUROSEM model. In J. Bordman & D. Favis-Mortlock (Eds.), Global change: Modelling soil erosion by water. NATO ASI publication; Series 1: Global environmental change (pp. 373–382). London: Springer.

    Google Scholar 

  • Morris, D. G., & Heerdegen, G. (1988). Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology, 1, 131–141. doi:10.1016/0169-555X(88)90011-6.

    Article  Google Scholar 

  • Nearing, M. A. (2005). Soil erosion and conservation. In J. Wainwright & M. Mulligan (Eds.), Environmental modelling: Finding simplicity in complexity (pp. 430). London: Wiley.

    Google Scholar 

  • Ngatunga, E. L. N., Lal, R., & Uriyo, A. P. (1984). Effects of surface management on runoff and soil erosion from some plots at Mlingano, Tanzania. Geoderma, 33, 1–12. doi:10.1016/0016-7061(84)90086-7.

    Article  Google Scholar 

  • Obando, J. (1996). Modelling the impact of land abandonment on runoff and soil erosion in a semi-arid catchment. UK: Ph.D. Thesis, University of London.

  • Oldeman, L. R., Hakkeling, R. T. A., & Sombroek, W. G. (1990). World map of the status of human-induced soil degradation: An explanatory note. Working Paper 90/07, Global Assessment of Soil Degradation GLASOD, ISRIC, Wageningen, the Netherlands.

  • Pilgrim, D. H., & Cordery, I. (1993). Chapter 9: Flood runoff. In D. R. Maidment (Ed.), Handbook of hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Pinter, J. P., Hatfield, J. L., Schepers, F. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., et al. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69, 647–664.

    Google Scholar 

  • Rapp, A. (1975). Soil erosion and sedimentation in Tanzania and Lesotho. Ambio, 4, 154–163.

    Google Scholar 

  • Reynolds, C. A., Jackson, T. J., & Rawls, W. J. (1999). Estimating available water content by linking the FAO soil map of the world with global soil profile databases and pedo-transfer functions. In AGU conference. Proceedings of the AGU conference held at Boston, MA. http://www.ngdc.noaa.gov/seg/cdroms/reynolds/reynolds/reynolds.htm.

  • Sharman, M. J., & Millot, M. (1993). Comparing time profiles: Problems in monitoring vegetation condition. In 6th AVHRR data user’s meeting. proceedings of the conference held at Darmstadt, Germany (pp. 261–267). EUMETSAT.

  • Singh, G., Babu, R., Narain, P., Bhushan, L. S., & Abrol, I. P. (1992). Soil erosion rates in India. Journal of Soil and Water Conservation, 47, 97–99.

    Google Scholar 

  • Small, C. (2001). Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing, 22, 1305–1334. doi:10.1080/01431160151144369.

    Article  Google Scholar 

  • Soil Conservation Service (1972). Soil conservation service national engineering handbook, section 4: Hydrology. Washington DC: United States Department of Agriculture Publications.

    Google Scholar 

  • Sonneveld, B. G. J. S., & Dent, D. L. (2009). How good is GLASOD? Journal of Environmental Management, 90, 274–283. doi:10.1016/j.jenvman.2007.09.008.

    Article  CAS  Google Scholar 

  • Staples, R. R. (1938). Runoff and soil erosion tests in semiarid Tanganyika territory. Annual report (109 pp.). Dar es Salaam, Tanzania: Department of Veterinary Science and Animal Husbandry.

  • Steininger, J. K. (2000). Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. International Journal of Remote Sensing, 21, 1139–1157. doi:10.1080/014311600210119.

    Article  Google Scholar 

  • Stocking, M. A. (1996). Soil erosion. In W. M. Adams, A. S. Goudie, & A. R. Orme (Eds.), The physical geography of Africa (pp. 326–341). Oxford: Oxford University Press.

    Google Scholar 

  • Symeonakis, E. (2001). Soil erosion modelling over sub-Saharan Africa using remote sensing and GIS. Ph.D. Thesis, University of London.

  • Symeonakis, E., & Drake, N. (2004). Monitoring desertification and land degradation over sub-Saharan Africa. International Journal of Remote Sensing, 25, 573–592. doi:10.1080/0143116031000095998.

    Article  Google Scholar 

  • Symeonakis, E., Bonifacio, R., & Drake, N. (2007a). A comparison of number-of-rain-days estimation techniques for continental hydrological modelling. In IEEE geosciences and remote sensing symposium. Proceedings of the symposium held at Barcelona, Spain, 23–27 July.

  • Symeonakis, E., Calvo-Cases, A., & Arnau-Rosalen, E. (2007b). Land use change and land degradation in south-eastern Mediterranean Spain. Environmental Management, 40, 80–94. doi:10.1007/s00267-004-0059-0.

    Article  Google Scholar 

  • Symeonakis, E., Robinson, T., & Drake, N. (2007c). GIS and multiple-criteria evaluation for the optimisation of tsetse fly eradication programmes. Environmental Monitoring and Assessment, 124, 89–103. doi:10.1007/s10661-006-9210-0.

    Article  Google Scholar 

  • Symeonakis, E., Bonifacio, R., Drake, N. (2009). A comparison of satellite and ground-based estimates of precipitation over Sub-Saharan Africa. International Journal of Applied Earth Observation and Geoinformation, 11, 15–26. doi:10.1016/j.jag.2008.04.002.

    Article  Google Scholar 

  • Thomas, D. S. G., & Middleton, N. J. (1994). Desertification: Exploding the myth (pp. 194). Chichester: Wiley.

    Google Scholar 

  • Thornes, J. B. (1976). Semi-arid erosional systems. Geographical Papers: 7. London School of Economics and Political Science, University of London.

    Google Scholar 

  • Thornes, J. B. (1985). The ecology of erosion. Geography (Sheffield, England), 70, 222–234.

    Google Scholar 

  • Thornes, J. B. (1990). The interaction of erosional and vegetation dynamics in land degradation: Spatial outcomes. In J. B. Thornes (Ed.), Vegetation and erosion (pp. 41–53). Chichester: Wiley.

    Google Scholar 

  • Todd, S. W., Hoffer, R. M., & Milchunas, D. G. (1998). Biomass estimation on grazed and ungrazed rangelands using spectral indices. International Journal of Remote Sensing, 19, 427–438. doi:10.1080/014311698216071.

    Article  Google Scholar 

  • Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D., Pak, E. W., Mahoney, R., et al. (2005). An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485–4498. doi:10.1080/01431160500168686.

    Article  Google Scholar 

  • UNEP (1992). World atlas of desertification. Sevenoaks: Edward Arnold.

    Google Scholar 

  • Vafeidis, A. T., Drake, N. A., & Wainwright, J. (2007). A proposed method for modelling the hydrologic response of catchments to burning with the use of remote sensing and GIS. Catena, 70, 396–409. doi:10.1016/j.catena.2006.11.008.

    Article  Google Scholar 

  • Van Dijk, A., Callis, S. L., Sakamoto, C. M., & Decker, W. L. (1987). Smoothing vegetation index profiles: An alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogrammetric Engineering and Remote Sensing, 53, 1059–1067.

    Google Scholar 

  • Viovy, N., Arino, O., & Belward, A. S. (1992). The best index slope extraction (BISE): A method for reducing noise in NDVI time-series. International Journal of Remote Sensing, 13, 1585–1590. doi:10.1080/01431169208904212.

    Article  Google Scholar 

  • Virgo, K., & Munro, R. (1978). Soil and erosion features of the Central Plateau region of Tigrai, Ethiopia. Geoderma, 20, 131–157. doi:10.1016/0016-7061(78)90040-X.

    Article  CAS  Google Scholar 

  • Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A review. Catena, 65, 2–18. doi:10.1016/j.catena.2005.10.005.

    Article  Google Scholar 

  • Wainwright, J. (1994). Anthropogenic factors in the degradation of semi-arid regions: A prehistoric case study in southern France. In A. C. Millington & K. Pye (Eds.), Environmental change in drylands: Biogeographical and geomorphological perspectives (pp. 427–441). London: Wiley.

    Google Scholar 

  • Weaver, A. V. B. (1989). Soil erosion rates in the Roxeni basin, Ciskei. The South African Geographical Journal, 71, 32–37.

    Google Scholar 

  • Wischmeier, W. H., & Smith, M. D. (1978). Predicting rainfall erosion losses—a guide to conservation planning. Agricultural Handbook No. 537. Washington, DC: United States Department of Agriculture.

    Google Scholar 

  • Zhang, X. (1999). Soil erosion modelling at the global scale using remote sensing and GIS. Ph.D. Thesis, University of London.

  • Zhang, X., Drake, N. A., & Wainwright, J. W. (2002). Scaling land-surface parameters for global scale soil-erosion estimation. Water Resources Research, 38, 1180–1189. doi:10.1029/2001WR000356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Symeonakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symeonakis, E., Drake, N. 10-Daily soil erosion modelling over sub-Saharan Africa. Environ Monit Assess 161, 369–387 (2010). https://doi.org/10.1007/s10661-009-0754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0754-7

Keywords

Navigation