Skip to main content

Advertisement

Log in

An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper developed an approach by the synthesis of remote sensing, landscape metrics, and statistical methods to examine the effects of landscape pattern, land surface temperature, and socioeconomic conditions on the spread of West Nile virus (WNV) caused by mosquitoes and animal hosts in Chicago, USA. Land use/land cover and land surface temperature images were derived from Terra’s Advanced Spaceborne Thermal Emission and Reflection Radiometer imagery. An analytical procedure using landscape metrics was developed, applying configuration analysis of landscape patterns in the study area. The positive reports of mosquitoes and animal hosts for WNV in fall, 2001–2006, were collected from the Cook County Public Health Department. Forty-nine municipalities were found to have WNV-positive records in mosquitoes and animal hosts in fall 2004. Socioeconomic data were obtained from the 2000 US Census. Statistical analysis was applied to WNV data in fall 2004 to identify the relationship between potential predictors and WNV spread. As a result, landscape factors, such as landscape aggregation index and the urban areas and areas of grass and water, showed strong correlations with the WNV-positive records. Socioeconomic conditions, such as the population over 65 years old, also showed a strong correlation with WNV-positive records. Thermal conditions of water showed a less but still considerable correlation to WNV-positive records. This research offers an opportunity to explore the effects of landscape pattern, land surface temperature, and socioeconomic conditions on the spread of WNV caused by mosquitoes and animal hosts. Results can contribute to public health and environmental management in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguiar, R., Oliveira, M., & Goncalves, H. (2002). Climate change impacts on the thermal performance of Portuguese buildings. Results of the SIAM study. Building Service Engineers Research and Technology, 23(4), 223–231. doi:10.1191/0143624402bt045oa.

    Article  Google Scholar 

  • Anderson, J. F., Andreadis, T. G., Main, A. J., Ferrandino, F. J., & Vossbrinck, C. R. (2006). West Nile virus from female and male mosquitoes (Diptera: Culicidae) in subterranean, ground, and canopy habitats in Connecticut. Journal of Medical Entomology, 43(5), 1010–1019. doi:10.1603/0022-2585(2006)43[1010:WNVFFA]2.0.CO;2.

    Article  Google Scholar 

  • Anyamba, A., Chretien, J. P., Small, J., Tucker, C. J., & Linthicum, K. J. (2006). Developing global climate anomalies suggest potential disease risks for 2006–2007. International Journal of Health Geographics, 5(1):60. http://www.ij-healthgeographics.com/content/5/1/60.

    Article  Google Scholar 

  • ASTER online product description (2005). Online resource. http://asterweb.jpl.nasa.gov/content/03_data/01_Data_Products/SurfaceTemperature.pdf.

  • Bain, D. J., & Brush, G. S. (2004). Placing the pieces: Reconstructing the original property mosaic in a warrant and patent watershed. Landscape Ecology, 19(8), 843–856.

    Article  Google Scholar 

  • Balenghien, T., Fouque, F., Sabatier, P., & Bicout, D. J. (2006). Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of Southern France. Journal of Medical Entomology, 43(5), 936–946.

    Article  CAS  Google Scholar 

  • Boyd, D. S., Foody, G. M., Curran, P. J., Lucas, R. M., & Honzak, M. (1996). An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration. International Journal of Remote Sensing, 17(2), 249–261.

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (2002). Provisional surveillance summary of the West Nile virus epidemic—United States, January–November 2002. MMWR, 51, 1129–1133.

    Google Scholar 

  • Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis, (2nd ed.). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Dohm, D. J., O’Guinn, M. L., & Turell, M. J. (2002). Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. Journal of Medical Entomology, 39(1), 221–225.

    Article  Google Scholar 

  • Dohm, D. J., & Turell, M. J. (2001). Effect of incubation at overwintering temperatures on the replication of West Nile virus in New York Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 38(3), 462–464.

    Article  CAS  Google Scholar 

  • Gingrich, J. B., Anderson, R. D., Williams, G. M., O’Connor, L., & Harkins, K. (2006). Stormwater ponds, constructed wetlands, and other best management practices as potential breeding sites for West Nile virus vectors in Delaware during 2004. Journal of the American Mosquito Control Association, 22(2), 282–91.

    Article  Google Scholar 

  • Gustafson, E. J. (1998). Quantifying landscape spatial pattern: What is the state of the art?. Ecosystems, 1, 143–156.

    Article  Google Scholar 

  • Hay, S. I., & Lennon, J. J. (1999). Deriving meteorological variables across Africa for the study and control of vector-borne disease: A comparison of remote sensing and spatial interpolation of climate. Tropical Medicine and International Health, 4, 58–71.

    Article  CAS  Google Scholar 

  • Hayes, E. B., & O’Leary, D. R. (2004). West Nile virus infection: A pediatric perspective. Pediatrics, 113(5), 1375–1381.

    Article  Google Scholar 

  • Herbreteau, V., Salem, G., Souris, M., Hugot, J., & Gonzalez, J. (2007). Thirty years of use and improvement of remote sensing, applied to epidemiology: From early promises to lasting frustration. Health & Place, 13(2), 400–403.

    Article  Google Scholar 

  • Hirano, Y., Yasuoka, Y., & Ichinose, T. (2004). Urban climate simulation by incorporating satellite-derived vegetation cover distribution into a mesoscale meteorological model. Theoretical and Applied Climatology, 79, 175–184.

    Article  Google Scholar 

  • Hodge, J. G. Jr., & O’Connell, J. P. (2005). West Nile virus: Legal responses that further environmental health. Journal of Environmental Health, 68(1), 44–47.

    Google Scholar 

  • Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed, K. H., & Goodrich, D. C. (1998). Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resources Research, 34(12), 3405–3420.

    Article  Google Scholar 

  • Jacob, F., Olioso, A., Gu, X., Su, Z., & Seguin, B. (2002). Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data with a spatialized surface energy balance model. Agronomie: Agriculture and Environment, 22, 669–680.

    Google Scholar 

  • Komar, N. (2003). West Nile virus: Epidemiology and ecology in North America. Advances in Virus Research, 61, 185–234.

    Article  Google Scholar 

  • Li, G., & Weng, Q. (2007). Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. International Journal of Remote Sensing, 28(2), 249–267.

    Article  CAS  Google Scholar 

  • Liang, S. Y., Linthicum, K. J., & Gaydos, J. C. (2002). Climate change and the monitoring of vector-borne disease. JAMA, Chicago, 287(17), 2286.

    Google Scholar 

  • Liu, Y., Hiyama, T., & Yamaguchi, Y. (2006). Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sensing of Environment, 105(2), 115–128.

    Article  Google Scholar 

  • Liu, H., & Weng, Q. (2008). Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, U.S.A. Environmental Monitoring and Assessment, 144, 199–219.

    Article  Google Scholar 

  • Luvall, J. C., & Holbo, H. R. (1991). Thermal remote sensing methods in landscape ecology. In M. G. Turner & R. H. Gardner (Eds.), Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity. Ecological Studies, Analysis and Synthesis 82. New York: Springer.

    Google Scholar 

  • Marfin, A. A., Petersen, L. R., Campbell, G. L., Craven, R. C., Roehrig, J. T., Julian, K. G., et al. (2000). Widespread West Nile virus activity, Eastern United States. Emerging Infectious Diseases, 7(4), 730–735.

    Article  Google Scholar 

  • McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). FRAGSTATS: Spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.Edu/landeco/research/fragstats/fragstats.

  • McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. General Technical Report PNW-GTR-351. USDA Forest Service. Pacific Northwest Research Station. Portland, OR.

  • McVicar, T. R., & Jupp, D. L. B. (1998). The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review. Agriculture Systems, 57, 399–468.

    Article  Google Scholar 

  • MMWR (2005). Update: West Nile virus activity—United States 2005. Morbidity and Mortality Weekly Report, 54(34), 851–852.

    Google Scholar 

  • O’Neill, R. V., Krummel, J. R., Gardner, R. H., Sugihara, G., Jackson, B., DeAngelis, D. L., et al. (1988). Indices of landscape pattern. Landscape Ecology, 1, 153–162.

    Article  Google Scholar 

  • Owen, T. W., Carlson, T. N., & Gillies, R. R. (1998). An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19, 1663–1681.

    Article  Google Scholar 

  • Peterjohn, W. T., & Correll, D. L. (1984). Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology, 65, 1466–1475.

    Article  CAS  Google Scholar 

  • Quattrochi, D. A., & Ridd, M. K. (1998). Analysis of vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data. Atmosphere Environment, 32(1), 19–33.

    Article  CAS  Google Scholar 

  • Rainham, D. G. C. (2005). Ecological complexity and West Nile virus: Perspectives on improving public health response. Canadian Journal of Public Health, 96(1), 34–40.

    Google Scholar 

  • Reisen, W. K., Fang, Y., Martinez, V. M. (2006). Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 43(2), 309–317.

    Article  Google Scholar 

  • Riitters, K. H., O’Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., & Timmins, S. P. (1995). A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 10(1), 23–39.

    Article  Google Scholar 

  • Rogers, D. J., Myers, M. F., Tucker, C. J., Smith, P. F., White, D. J., Backenson, P. B., et al. (2002). Prediction the distribution of West Nile fever in North America using satellite sensor data. Journal of the American Society for Photogrammetry and Remote Sensing, 68(2), 112–136.

    Google Scholar 

  • Ruiz, M. O., Tedesco, C., McTighe, T. J., Austin, C., & Kitron, U. (2004). Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. International Journal of Health Geographics, 3(1), 8–18.

    Article  Google Scholar 

  • Ruiz, M. O., Walker, E. D., Foster, E. S., Haramis, L. D., & Kitron, U. D. (2007). Association of West Nile virus illness and urban landscapes in Chicago and Detroit. International Journal of Health Geographics, 6(1), 10–20.

    Article  Google Scholar 

  • Sannier, C. A. D., Taylor, J. C., & Campbell, K. (1998). Compatibility of FAO-ARTEMIS and NASA Pathfinder AVHRR Land NDVI data archives for the African continent. International Journal of Remote Sensing, 19, 3441–3450.

    Article  Google Scholar 

  • Savage, H. M., Anderson, M., Gordon, E., McMillen, L., Colton, L., Charnetzky, D., et al. (2006). Oviposition activity patterns and West Nile virus infection rates for members of the Culex pipiens complex at different habitat types within the hybrid zone, Shelby County, TN, 2002 (Diptera: Culicidae). Journal of Medical Entomology, 43(6), 1227–1238.

    Article  Google Scholar 

  • Smith, R. M. (1986). Comparing traditional methods for selecting class intervals on choropleth maps. Professional Geographer, 38(1), 62–67.

    Article  Google Scholar 

  • Turner, M. G. (1990). Spatial and temporal analysis of landscape patterns. Landscape Ecology, 4(1), 21–30.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (1997). Complete urban surface temperatures. Journal of Applied Meteorology, 36, 1117–1132.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Wan, Z., & Dozier, J. (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 892–905.

    Google Scholar 

  • Wan, Z., Zhang, Y., Zhang, Q., & Li, Z.-L. (2004). Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25(1), 261–274.

    Article  Google Scholar 

  • Wang, Y., Zhang, X., Liu, H., & Ruthie, H. K. (1999). Landscape characterization of metropolitan Chicago region by Landsat TM. In The Proceeding of ASPRS Annual Conference (pp. 238–247).

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483.

    Article  Google Scholar 

  • Whitman, L. (1937). The multiplication of the virus of yellow fever in Aedes aegypti. The Journal of Experimental Medicine, 66, 133–140.

    Article  Google Scholar 

  • William, K. R., Fang, Y., & Martinez, V. M. (2006). Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 43(2), 309–317.

    Article  Google Scholar 

  • Wu, J., Dennis, E. J., Matt, L., & Paul, T. T. (2000). Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geographic Information Sciences, 6(1), 6–19.

    Google Scholar 

  • Zou, L., Miller, S. N., & Schmidtmann, E. T. (2006). Mosquito larval habitat mapping using remote sensing and GIS: Implications of coalbed methane development and West Nile virus. Journal of Medical Entomology, 43(5), 1034–1041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihao Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Weng, Q. An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago. Environ Monit Assess 159, 143–161 (2009). https://doi.org/10.1007/s10661-008-0618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0618-6

Keywords

Navigation