Skip to main content
Log in

Design and assembly of an experimental laboratory for the study of atmosphere–plant interactions in the system of fumigation chambers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An experimental laboratory was designed and assembled at the Botanical Institute of São Paulo, Brazil, in order to research atmosphere–plant interactions through the use of a system of fumigation chambers. A system of three “closed” fumigation chambers was designed to be used inside or outside the laboratory. The system was built to be used with a single pollutant or a mix of them. The innovation in this system is to allow chemical reactions inside the chambers that simulate atmospheric chemistry, especially photochemical processes involving high levels of ozone. Assessment of the performance and applicability of the system was based on the response of Nicotiana tabacum Bel W3 exposed to ozone produced alternatively by a generator and inside the chamber by reactions of its precursors. The results showed that the system can be well applied to the study of atmospheric chemistry interactions and the effects on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Booker, F. L., & Fiscus, E. (2005). The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. Journal of Experimental Botany, 56, 2139–2151. doi:10.1093/jxb/eri214.

    Article  CAS  Google Scholar 

  • Bulbovas, P., Souza, S. R., Moraes, R. M., Luizão, F., & Artaxo, P. (2007). Plântulas de soja ‘Tracajá’ expostas ao ozônio sob condições controladas. Pesquisa Agropecuária Brasileira, 42, 641–646.

    Article  Google Scholar 

  • Bytnerowicz, A., Musselman, R., & Szaro, R. (2004). Effects of air pollution on the Central and Eastern European mountain forests. Environmental Pollution, 130, 1–3. doi:10.1016/j.envpol.2003.10.019.

    Article  CAS  Google Scholar 

  • Del Rı’, O., Corpas, F. J., & Barroso, J. B. (2004). Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry, 65, 783–792. doi:10.1016/j.phytochem.2004.02.001.

    Article  Google Scholar 

  • El-Khatib, A. A. (2003). The response of some common Egyptian plants to ozone and their use as biomonitors. Environmental Pollution, 124, 419–428. doi:10.1016/S0269-7491(03)00045-9.

    Article  CAS  Google Scholar 

  • Enyedi, A. J., Eckardt, N. A., & Pell, E. J. (1992). Activity of ribulose bisphosphate carboxylase/oxygenase from potato cultivars with differential response to ozone stress. New Phytologist, 122, 493–500. doi:10.1111/j.1469-8137.1992.tb00078.x.

    Article  Google Scholar 

  • Finnan J. M., Jones M. B., & Burke J. I. (1996). A time-concentration study on the effects of ozone on spring wheat (Triticum aestivum L) .1. Effects on yield. Agriculture Ecosystems & Environment, 57(2–3) 159–167.

    Article  CAS  Google Scholar 

  • Fowler, D., Cape, J. N., Coyle, M., Smith, R. I., Hjellbrekke, A. G., Simpson, D., et al. (1999). Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environmental Pollution, 43, 55–59.

    Google Scholar 

  • Grantz, D. A., Zhang, X. J., Massman, W., Den Hartog, J., Neumann, G. H. H., & Pederson, J. R. (1995). Effects of stomatal conductance and surface wetness on ozone deposition in field-grown grape. Atmospheric Environment, 29, 3189–3198. doi:10.1016/1352-2310(95)00129-M.

    Article  CAS  Google Scholar 

  • Hopkin, M. (2007). Carbon sinks threatened by increasing ozone. Nature, 488, 396–397. doi:10.1038/448396b.

    Article  Google Scholar 

  • Klumpp, A., Klumpp, G., & Domingos, M. (1994). Plants as bioindicators of air pollution at the serra do mar near the industrial complex of Cubatão, Brazil. Environmental Pollution, 85, 109–116. doi:10.1016/0269-7491(94)90244-5.

    Article  CAS  Google Scholar 

  • Lawson, T., Craigon, J., Black, C. R., Colls, J. J., Tulloch, A. M., & Landon, G. (2001). Effects of elevated carbon dioxide and ozone on the growth and yield of potatoes (Solanum tuberosum) grown in open-top chambers. Environmental Pollution, 111, 479–491. doi:10.1016/S0269-7491(00)00080-4.

    Article  CAS  Google Scholar 

  • Medhurst, J., Parsby, J., Linder, S., Wallin, G., Ceschia, E., & Slaney, M. (2006). A whole-tree chamber system for examining tree-levels physiological responses of field-grow trees to environmental variation and climate change. Plant Cell and Environmental, 29, 1853–1869. doi:10.1111/j.1365-3040.2006.01553.x.

    Article  CAS  Google Scholar 

  • Meyer, U., Köllner, B., Willenbrink, J., & Krause, G. H. M. (2000). Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat. Agriculture, Ecosystems and Environment, 78, 49–55. doi:10.1016/S0167-8809(99)00111-5.

    Article  CAS  Google Scholar 

  • Montero L., Vasconcellos P. C., Souza S. R., & Carvalho, L. R. F (2001). Measurements of atmospheric carboxylic acids and carbonyl compounds in Sao Paulo city, Brazil. Environmental Science & Technology, 35(15), 3071–3081.

    Article  CAS  Google Scholar 

  • Morgan, P. B., Ainsworth, E. A., & Long, S. P. (2003). How does elevated ozone impact soybean? A meta analysis of photosynthesis, growth and yield. Plant, Cell & Environment, 26, 1317–1328. doi:10.1046/j.0016-8025.2003.01056.x.

    Article  CAS  Google Scholar 

  • Orendovici, T., Skelly, J. M., Ferdinand, J. A., Savage, J. E., Sanz, M. J., & Smith, G. C. (2003). Response of native plants of northeastern United States and southern Spain to ozone exposures; determining exposure/response relationships. Environmental Pollution, 125, 31–40. doi:10.1016/S0269-7491(03)00089-7.

    Article  CAS  Google Scholar 

  • Pasqualini, S., Batini, P., Ederli, L., Proceddu, A., Piccioni, C., De Marchis, F., et al. (2001). Effects of short-term ozone fumigation on tobacco plants: Response of the scavenging system and expression of the glutathione reductase. Plant Cell and Environment, 24, 245–252. doi:10.1111/j.1365-3040.2001.00671.x.

    Article  CAS  Google Scholar 

  • Pleijel, H., Danielsson, H., Ojanperä, K., De Temmerman, L., Högy, P., Badiani, M., et al. (2003). Relationships between ozone exposure and yield loss in European wheat and potato—a comparison of concentration- and flux-based exposure indices. Atmospheric Environment, 37, 475–485. doi:10.1016/S1352-2310(02)00924-X.

    Article  Google Scholar 

  • Saitanis, C. J., Riga-Karandinis, R. A. N., & Karandinos, M. G. (2001). Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties. Chemosphere, 42, 945–953. doi:10.1016/S0045-6535(00)00158-2.

    Article  CAS  Google Scholar 

  • Sant’Anna, S. M. R., Esposito M. P., Domingos M., & Souza S. R. (2008). Suitability of Nicotiana tabacum ‘Bel W3’ for biomonitoring ozone in Sao Paulo, Brazil. Environmental Pollution, 151(2), 389–394.

    Article  Google Scholar 

  • Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791–794. doi:10.1038/nature06059.

    Article  CAS  Google Scholar 

  • Souza S. R., Vasconcellos P. C., & Carvalho L. R. F. (1999). Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil. Atmospheric Environment, 33(16), 2563–2574.

    Article  CAS  Google Scholar 

  • Stokes, N. J., Lucas, P. W., & Hewitt, C. N. (1993). Controlled environment fumigation chambers for study of reactive air pollutant effects on plants. Atmospheric Environment, 27, 679–683.

    Google Scholar 

  • Terry, G. M., Stokes, N. J., Lucas, P. W., & Hewitt, C. N. (1995). Effects of reactive hydrocarbons and hydrogen peroxide on antioxidant activity in cherry leaves. Environmental Pollution, 88, 19–26. doi:10.1016/0269-7491(95)91044-L.

    Article  CAS  Google Scholar 

  • Vapaavuori, E., Oksanen T., & Holopainen J. K. (2002). Open-top chamber fumigation of cloned silver birch (Betula PendulaRoth) trees to elevated CO2 and ozone: Description of the fumigation system and the experimental site. Research Papers 838, (pp. 28). Joensuu, Finland: The Finnish Forest Research Institute.

  • Vergé, X., Chapuis, A., & Delpoux, M. (2002). Bioindicator reliability: the example of Bel W3 tobacco (Nicotiana tabacum L.). Environmental Pollution, 118, 337–349. doi:10.1016/S0269-7491(01)00300-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, S.R., Pagliuso, J.D. Design and assembly of an experimental laboratory for the study of atmosphere–plant interactions in the system of fumigation chambers. Environ Monit Assess 158, 243–249 (2009). https://doi.org/10.1007/s10661-008-0578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0578-x

Keywords

Navigation