Skip to main content
Log in

Integrated pollution evaluation of the Tagus River in Central Spain

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was to integrate hydrochemical and sediment data in order to obtain a picture of the pollution state of the Tagus River along central Spain. This area is of special interest because tributaries from the Madrid region are discharged and no previous data were available. Waters and sediments were sampled between 2002 and 2004 from selected sites before and after Jarama River confluence (Madrid city input). The samples were analysed for more than 50 parameters, including those of physico-chemical nature and those reporting the pollution caused by both metals and organic compounds. The quality of waters for different uses has been tested and statistical quality indexes of both global and partial type has also been established. Sediments pollution state was evaluated by comparison with general quality standards. A high degree of pollution and general degradation was observed in the Tagus River downstream the Jarama River input. The pollution of waters is mainly related to parameters indicators of organic pollution from urban sewage. In sediments, a dramatic increase in the concentration of trace metals was found in different points, exceeding toxicological threshold. Further studies would be necessary for organic pollutants and also to evaluate the remobilization potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, E., Alarcón, P., De la Fuente, P., Quijano, A., & Bustos, A. (1993). Analytical monitoring of river contamination by instrumental techniques. Annali di Chimica, 83, 441–450.

    CAS  Google Scholar 

  • American Public Health Association (1992). Métodos normalizados para el análisis de aguas potables y residuales, 17th edn. Madrid, Spain: Díaz de Santos.

    Google Scholar 

  • Birch, G., Siaka, M., & Owens, C. (2001). The source of anthropogenic heavy metals in fluvial sediments of a rural catchment: Coxs River, Australia. Water, Air, and Soil Pollution, 126, 13–35. doi:10.1023/A:1005258123720.

    Article  CAS  Google Scholar 

  • Chapman, H. D. (1991). Métodos de análisis de suelos, plantas y aguas. Mexico DC: Trillas Editor.

    Google Scholar 

  • De Miguel, E., Jiménez de Grado, M., Llamas, J. F., Martín-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application to the trace element load in the urban soil of Madrid. The Science of the Total Environment, 215, 113–122. doi:10.1016/S0048-9697(98)00112-0.

    Article  Google Scholar 

  • De Miguel, E., Llamas, J. F., Chacón, E., & Mazadiego, L. F. (1999). Sources and pathways of trace elements in urban environments: A multi-elemental qualitative approach. The Science of the Total Environment, 235, 355–357. doi:10.1016/S0048-9697(99)00234-X.

    Article  Google Scholar 

  • De Miguel, E., Charlesworth, S., Ordónez, A., & Seijas, E. (2005). Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). The Science of the Total Environment, 340, 137–148. doi:10.1016/j.scitotenv.2004.07.031.

    Article  Google Scholar 

  • EEC (1975). Directive 75/440/EEC. Require quality of superficial waters for production of drinking water. Off. J. Europ. Econ. Comm., No. L, 193 (16.06.75).

  • EEC (1980). Directive 80/778/EEC. Quality of waters destined for human consumption. Off. J. Europ. Econ. Comm., No. L, 229 (30.08.80).

  • Environment Canada (2002). Canadian Environmental Quality Guidelines: Summary Table. http://www.ccme.ca/assets/pdf/e1_06.pdf.

  • Environmental Protection Agency (1992). Water Quality Standards: Establishment of numeric criteria for priority toxic pollutants, State’s compliance, Final Rule. Federal register, 40 CFR Part 131, V. 57, 246, pp.60847–60916.

  • Fernández, M., Cuesta, S., Jiménez, O., García, M. A., Hernández, L. M., Marina, M. L., et al. (2000). Organochlorine and heavy metal residues in the water/sedimentsystem of the Southeast Regional Park in Madrid, Spain. Chemosphere, 41, 801–812. doi:10.1016/S0045-6535(00)00004-7.

    Article  Google Scholar 

  • Förstner, U. (1985). Chemical forms and reactivities of metals in sediments. In Leschber, R., Davis, R. D. & L’Hermie, P. (Eds.), Chemical methods for assessing bioavailable metals in sludges and soils (pp. 1–30). London: Elsevier.

    Google Scholar 

  • Förstner, U., & Salomons, W. (1980). Trace metal analysis on polluted sediments. Part I: Assessment of sources and intensities. Environmental Technology Letters, 1, 494–505.

    Article  Google Scholar 

  • Hasalan, S. M. (1991). River pollution—An ecological perspective. Great Britain: Belhaven.

    Google Scholar 

  • Hermida Ameijeiras, A., Simal Gándara, J., López Hernández, J., & Simal Lozano, J. (1995). Water Research, 29, 2118–2124. doi:10.1016/0043-1354(95)00022-D.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1982). Análisis Químico de Suelos. 4th edition. Barcelona: Omega Printer.

    Google Scholar 

  • Kim, H. T. (1996). Soil sampling, preparation and analysis. New York: Marcel Dekker Printer.

    Google Scholar 

  • Manahan, S. E. (1994). Environmental chemistry. USA: Lewis Public, CRC.

    Google Scholar 

  • Miller, T. G. (1994). Living in the environment, principles, connections and solutions, 8th edn. CA: Wadsworth.

    Google Scholar 

  • Ontario Ministry of Environment and Energy (1998). Guideline for use at contaminated sites in Ontario. Appendix 2: Soil, groundwater and sediment criteria. http://www.ene.gov.on.ca/envision/gp/3161e01_appendix.pdf.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions of the American Geophysical Union, 25, 914–923.

    Google Scholar 

  • Rodier, J. (1981). Análisis de aguas. Barcelona, Spain: Omega Printer.

    Google Scholar 

  • Tenorio, M. D., & Torija, M. E. (1992). Comportamiento del manganeso y hierro en las aguas del río Jarama: contenido, fluctuaciones y relaciones con otros parámetros físico-químicos. Anales de Bromatología, 44, 37–43.

    Google Scholar 

  • USDA (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC: U.S. Dept. Agriculture, Handbook 60.

  • US Department of Energy (1997). Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. ES/ER/TM-95/R4. Oak Ridge National Laboratory. http://riskassessment.ornl.gov/documents/tm95r4.pdf.

  • US Environmental Protection Agency (1999). Screening level ecological risk assessment protocol for hazardous waste combustion facilities, volume 3. Appendix E: Toxicity reference values. EPA 530-D99-001C. http://www.epa.gov/epaoswer/hazwaste/combust/eco-risk/volume3/appx-e.pdf.

  • USEPA (1996). Test methods for evaluating solid wastes. Physical/chemical methods (SW-846) Office of solid waste. EPA-3660B. Revision 2, December 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Rodríguez Martín-Doimeadios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berzas Nevado, J.J., Rodríguez Martín-Doimeadios, R.C., Guzmán Bernardo, F.J. et al. Integrated pollution evaluation of the Tagus River in Central Spain. Environ Monit Assess 156, 461–477 (2009). https://doi.org/10.1007/s10661-008-0498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0498-9

Keywords

Navigation