Skip to main content

Advertisement

Log in

Air pollution sources of PM10 in Buenos Aires City

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To elucidate the sources of PM10 air pollution from the experimental information collected in a local air quality monitoring campaign we have applied two methods, effective variance and genetic algorithms, in the solution of the chemical mass balance. The comparison of these two mathematical approaches show that the identification of the possible sources and the evaluation of its contributions are quite independent of them. The role of possible different sources for major and trace elements and the significance of standardizing available data is also addressed. We also present a simple method for identifying the number of candidate sources, a key element defining the dimension of the search space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthold, M., & Hand, D. (2003). Intelligent data analysis (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Bogo, H., Gómez, D., Reich, S., Negri, M., & San Román, E. (2001). Traffic pollution in a downtown site of Buenos Aires City. Atmospheric Environment, 35, 1717–1729. doi:10.1016/S1352-2310(00)00555-0.

    Article  CAS  Google Scholar 

  • Bogo, H., Otero, M., Castro, P., Ozafran, M., Kreiner, A., Calvo, E., et al. (2003). Study of atmospheric particulate matter in Buenos Aires City. Atmospheric Environment, 37, 1135–1147. doi:10.1016/S1352-2310(02)00977-9.

    Article  CAS  Google Scholar 

  • Cartwright, H., & Harris, S. (1993). Analysis of the distribution of airborne pollution using genetic algorithms. Atmospheric Environment, 27, 1783–1791.

    Google Scholar 

  • Falcón, Y., García, R., Granados, M., & Palomero, M. (1993). Respirable particles and ozone concentrations measured inside an office in Mexico City. Journal of Aerosol Science, 24(Supplement 1), S437–S438. doi:10.1016/0021-8502(93)90311-V.

    Article  Google Scholar 

  • Friedlander, S. K. (1973). Chemical element balances and identification of air pollution sources. Environmental Science & Technology, 7, 235–240. doi:10.1021/es60075a005.

    Article  CAS  Google Scholar 

  • Goméz, D., Giné, M., Sánchez, A., & Smichowski, P. (2005). Antimony: A traffic-related element in the atmosphere of Buenos Aires, Argentina. Journal of Environmental Monitoring, 7, 1162–1168. doi:10.1039/b508609d.

    Article  CAS  Google Scholar 

  • Goméz, D., Reich, S., Dawidowski, L., & Vázquez, C. (2004). A combined analysis to identify airborne PM10 sources. Journal of Environmental Monitoring, 6, 1–10. doi:10.1039/b309380h.

    Article  CAS  Google Scholar 

  • Greenberg, H. J. (1995). Mathematical programming models for environmental quality control. Operations Research, 43, 578–622.

    Article  Google Scholar 

  • Haupt, R. L., & Haupt, S. E. (2002). Practical genetic algorithms. New York: Wiley.

    Google Scholar 

  • Henry, R. C. (1997). History and fundamentals of multivariate air quality receptor models. Chemometrics and Intelligent Laboratory Systems, 37, 37–42. doi:10.1016/S0169-7439(96)00048-2.

    Article  CAS  Google Scholar 

  • Henry, R. C. (2002). Multivariate receptor models—current practice and future trends. Chemometrics and Intelligent Laboratory Systems, 60, 43–48. doi:10.1016/S0169-7439(01)00184-8.

    Article  CAS  Google Scholar 

  • Henry, R. C. (2003). Multivariate receptor modeling by N-dimensional edge detection. Chemometrics and Intelligent Laboratory Systems, 65, 179–189. doi:10.1016/S0169-7439(02)00108-9.

    Article  CAS  Google Scholar 

  • Hopke, P. K. (1997). Receptor modeling for air quality management. In R. E. Hester & R. M. Harrison (Ed.), Issues in environmental science, Issue 8 (pp. 95–117). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Hopke, P. K. (1985). Receptor modeling in environmental chemistry. New York: Wiley.

    Google Scholar 

  • Johnson, R., & Wichern, D. (1998). Applied multivariate statistical analysis. Prentice Hall: Upper Saddle River.

    Google Scholar 

  • Jolliffe, T. (1986). Principal component analysis. New York: Springer.

    Google Scholar 

  • Magallanes, J., Murruni, L., Gomez, D., Smichowski, P., & Gettar, R. (2008). An approach to air pollution source–receptor solution by angular distances. Water, Air, and Soil Pollution, 188, 235–245. doi:10.1007/s11270-007-9540-8.

    Article  CAS  Google Scholar 

  • McClellan, R. O. (2002). Setting ambient air quality standards for particulate matter. Toxicology, 27, 329–347. doi:10.1016/S0300-483X(02)00459-6.

    Article  Google Scholar 

  • Miller, M. S., Friedlander, S. K., & Hidy, G. M. (1972). A chemical element balance for the Pasadena aerosol. Journal of Colloid and Interface Science, 39, 165–176. doi:10.1016/0021-9797(72)90152-X.

    Article  CAS  Google Scholar 

  • Okuda, T., Kato, J., Mori, J., Suda, Y., Shigeru, T., Kebin, H., et al. (2004). Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols. The Science of the Total Environment, 330, 145–158. doi:10.1016/j.scitotenv.2004.04.010.

    Article  CAS  Google Scholar 

  • Orsini, C. Q., & Boueres, L. C. S. (1977). A PIXE system for air pollution studies in south america. Nuclear Instruments and Methods, 142, 27–32. doi:10.1016/0029-554X(77)90802-3.

    Article  CAS  Google Scholar 

  • Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37, 23–35. doi:10.1016/S0169-7439(96)00044-5.

    Article  CAS  Google Scholar 

  • Paatero, P., & Hopke, P. (2002). Utilizing wind direction and wind speed as independent variables in multilinear receptor modeling studies. Chemometrics and Intelligent Laboratory Systems, 60, 25–41. doi:10.1016/S0169-7439(01)00183-6.

    Article  CAS  Google Scholar 

  • Paatero, P., Hopke, P. K., Song, X. H., & Ramadan, Z. (2002). Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems, 60, 253–264. doi:10.1016/S0169-7439(01)00200-3.

    Article  CAS  Google Scholar 

  • Paatero, P., & Tapper, U. (1993). Analysis of different modes of factor analysis as least squares fit problems. Chemometrics and Intelligent Laboratory Systems, 18, 183–194. doi:10.1016/0169-7439(93)80055-M.

    Article  CAS  Google Scholar 

  • Palatnik, L. S., & Landau, A. I. (1964). Phase equilibria in multicomponent systems. New York: Rinehart and Winston.

    Google Scholar 

  • Park, S., & Kim, Y. (2004). Source contributions to fine particulate matter in an urban atmosphere. Chemosphere, 59, 217–226. doi:10.1016/j.chemosphere.2004.11.001.

    Article  CAS  Google Scholar 

  • Préndez, M., & Ortíz, J. (1982). Man generates particulate matter as a result of industrial activities. Journal of the Chilean Chemical Society, 27, 283–285.

    Google Scholar 

  • Qin, Y., & Oduyemi, K. (2003). Atmospheric aerosol source identification and estimates of source contributions to air pollution in Dundee, UK. Atmospheric Environment, 37, 1799–1809. doi:10.1016/S1352-2310(03)00078-5.

    Article  CAS  Google Scholar 

  • Quan, J., & Zhang, X. (2008). Assessing the role of ammonia in sulfur transformation and deposition in China. Atmospheric Research, 88, 78–88. doi:10.1016/j.atmosres.2007.10.006.

    Article  CAS  Google Scholar 

  • Reich, S. L., Magallanes, J., Gómez, D. R., Dawidowski, L. E., Zupan, J., & Grosel, N. (2006). An analysis of secondary pollutants in Buenos Aires City. Environmental Monitoring and Assessment, 119, 441–457. doi:10.1007/s10661-005-9035-2.

    Article  CAS  Google Scholar 

  • Smichowski, P., Gómez, D., Dawidowski, L., Giné, M., Sánchez Bellato, S., & Reich, S. (2004). Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques. Journal of Environmental Monitoring, 6, 286–294. doi:10.1039/b312446k.

    Article  CAS  Google Scholar 

  • Song, X. H., & Hopke, P. K. (1996). Solving the chemical mass balance problem using an artificial neural network. Environmental Science & Technology, 30, 531–535. doi:10.1021/es950281o.

    Article  CAS  Google Scholar 

  • SPECIATE database (2002). U.S. Environmental Protection Agency. Research Triangle Park. NC.

  • Taylor, S. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • The Clean Air Initiative in Latin American Cities (2002). External evaluation of phase I. Rotterdam: Institute of Housing and Urban Development Studies.

    Google Scholar 

  • Watson, J. G., Cooper, J. A., Huntzicker, J. J. (1984). Aerosol chemical composition and light scattering in Portland, Oregon: The role of carbon. Atmospheric Environment, 18, 235–240.

    Article  Google Scholar 

  • Watson, J. G., Robinson, N. F., Lewis, C. W., Coulter, C. T., Chow, J. C., Fujita, E. M., et al. (1994). CMB8 applications and validation protocol for PM2.5 and VOCs. EPA Report No. 1808.

  • Watson, J., Zhu, T., Chow, J., Engelbercht, J., Fujita, E., & Wilson, W. (2002). Receptor modeling application framework for particle source apportionment. Chemosphere, 49, 1093–1136.

    Article  CAS  Google Scholar 

  • Weckwerth, G. (2001). Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment, 35, 5525–5536.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1231.

    Article  CAS  Google Scholar 

  • Williamson, H. J., & DuBose, D. A. (1983). Receptor model technical series, volume III: User’s manual for chemical mass balance model. EPA-450/4-83-014, U.S. Environmental Protection Agency, Research Triangle Park, N.C.

  • World Bank (1995). Argentina managing environmental pollution: Issues and options. Report No 14070-AR.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Reich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, S., Robledo, F., Gomez, D. et al. Air pollution sources of PM10 in Buenos Aires City. Environ Monit Assess 155, 191–204 (2009). https://doi.org/10.1007/s10661-008-0428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0428-x

Keywords

Navigation