Skip to main content

Advertisement

Log in

Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Daily PM10 concentrations were measured at four sampling stations located in Chiang Mai and Lamphun provinces, Thailand. The sampling scheme was conducted during June 2005 to June 2006; every 3 days for 24 h in each sampling period. The result revealed that all stations shared the same pattern, in which the PM10 (particulate matters with diameter of less than 10 μm) concentration increased at the beginning of dry season (December) and reached its peak in March before decreasing by the end of April. The maximum PM10 concentration for each sampling station was in the range of 140–182 μg/m3 which was 1.1–1.5 times higher than the Thai ambient air quality standard of 120 μg/m3. This distinctly high concentration of PM10 in the dry season (Dec. 05–Mar. 06) was recognized as a unique seasonal pattern for the northern part of Thailand. PM10 concentration had a medium level of negative correlation (r = −0.696 to −0.635) with the visibility data. Comparing the maximum PM10 concentration detected at each sampling station to the permitted PM10 level of the national air quality standard, the warning visibility values for the PM10 pollution-watch system were determined as 10 km for Chiang Mai Province and 5 km for Lamphun Province. From the analysis of PM10 constituents, no component exceeded the national air quality standard. The total concentrations of PM10-bond polycyclic aromatic hydrocarbons (PAHs) are calculated in terms of total toxicity equivalent concentrations (TTECs) using the toxicity equivalent factors (TEFs) method. TTECs in Chiang Mai and Lamphun ambient air was found at a level comparable to those observed in Nagasaki, Bangkok and Rome and at a lower level than those reported at Copenhagen. The annual number of lung cancer cases for Chiang Mai and Lamphun Provinces was estimated at two cases/year which was lower than the number of cases in Bangkok (27 cases/year). The principal component analysis/absolute principal component scores (PCA/APCS) model and multiple regression analysis were applied to the PM10 and its constituents data. The results pointed to the vegetative burning as the largest PM10 contributor in Chiang Mai and Lamphun ambient air. Vegetative burning, natural gas burning & coke ovens, and secondary particle accounted for 46–82%, 12–49%, and 3–19% of the PM10 concentrations, respectively. However, natural gas burning & coke ovens as well as vehicle exhaust also deserved careful attention due to their large contributions to PAHs concentration. In the wet season and transition periods, 42–60% of the total PAHs concentrations originated from vehicle exhaust while 16–37% and 14–38% of them were apportioned to natural gas burning & coke ovens and vegetative burning, respectively. In the dry period, natural gas burning & coke ovens, vehicle exhaust, and vegetative burning accounted for 47–59%, 20–25%, and 19–28% of total PAHs concentrations. The close agreement between the measured and predicted concentrations data (R2 > 0.8) assured enough capability of PCA/APCS receptor model to be used for the PM10 and PAHs source apportionment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30, 1009–1017, Medline. doi:10.1016/j.envint.2004.04.004.

    Article  CAS  Google Scholar 

  • Anderson, M. J., Daly, E. P., Miller, S. L., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds: II. Application of receptor models to TEAM study data. Atmospheric Environment, 36, 3643–3658. doi:10.1016/S1352-2310(02)00280-7.

    Article  CAS  Google Scholar 

  • Cachier, H., Liousse, C., Buat-Menard, P., & Gaudichet, A. (1995). Particulate content of savanna fire emissions. Journal of Atmospheric Chemistry, 22(1–2), 123–148.

    Article  CAS  Google Scholar 

  • CEIDARS: California Emission Inventory And Reporting System (2002). Particulate matter (PM) speciation profiles, retrieved June 2005, from www.arb.ca.gov/ei/speciate/PMPROF_09_27_02.xls

  • Chiang Mai Commercial Aviation (2007). Personal contact.

  • Chiang Mai Province Industrial Division (2003). Statistical record in year 2003, retrieved October 2007, from http://e.chiangmai.go.th/new2005/info/info_6_2.php.

  • Department of Alternative Energy Development and Efficiency (DEDE) (2005). Ministry of energy, Thailand energy report 2005. Retrieved October 2007, from www.dede.go.th/dede/fileadmin/upload/cc/30_3_2550_3_4.pdf.

  • Department of Provincial Administration (2005) Population data. Retrieved October 2007, from http://www.dopa.go.th/xstat/popyear.html.

  • Dimashki, M., Lim, L. H., Harrison, R. M., & Harrad, S. (2001). Temporal trends, temperature dependence, and relative reactivity of atmospheric polycyclic aromatic hydrocarbons. Environmental Science and Technology, 35, 2264–2267, Medline. doi:10.1021/10.1021/es000232y.

    Article  CAS  Google Scholar 

  • EANET: Acid Deposition Monitoring Network in East Asia (2000). The second interim scientific advisory group meeting of acid deposition monitoring network in East Asia. Technical manual for wet deposition monitoring in East Asia. Retrieved April 2004, from http://www.eanet.cc/product/techwet.pdf.

  • EANET: Acid Deposition Monitoring Network in East Asia (2003). The third interim scientific advisory group meeting of acid deposition monitoring network in East Asia. Technical document for filter pack method in East Asia. Retrieved April 2004, from http://www.eanet.cc/product/techdoc_fp.pdf.

  • Forest Fire Control Division National Park (2007). Wildlife and Plant Conservation Department, Personal contact.

  • Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37, 5307–5317. doi:10.1016/j.atmosenv.2003.09.011.

    Article  CAS  Google Scholar 

  • Guo, H., Wang, T., & Louie, P. K. K. (2004). Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environmental Pollution, 129, 489–498, Medline. doi:10.1016/j.envpol.2003.11.006.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science and Technology, 30, 825–832. doi:10.1021/es950252d.

    Article  CAS  Google Scholar 

  • JICA: Japan International Cooperation Agency (1991). The study on the air quality management planning for the Samut Prakarn industrial district in the Kingdom of Thailand, Final report.

  • Karppinen, A., Joffre, S. M., Kukkonen, J., & Bremer, P. (2001). Evaluation of inversion strengths and mixing heights during extremely stable atmospheric stratification. International Journal of Environment and Pollution, 16(1–6), 603–613.

    CAS  Google Scholar 

  • Kumar, A. V., Patil, R. S., & Nambi, K. S. V. (2001). Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmospheric Environment, 35, 4245–4251. doi:10.1016/S1352-2310(01)00258-8.

    Article  CAS  Google Scholar 

  • Lamphun Meteorology (2007). Personal contact.

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881, Medline. doi:10.1021/es0206184.

    Article  CAS  Google Scholar 

  • Li, A., Jang, J. K., & Scheff, P. A. (2003). Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environmental Science and Technology, 37, 2958–2965, Medline. doi:10.1021/es026309v.

    Article  CAS  Google Scholar 

  • Mäkelä, K., Estlander, K., & Kukkonen, J. (1998). Air pollution episodes in Finnish cities. Nordic Road & Transport Research, 10(1), 4–6.

    Google Scholar 

  • Menichini, E., Monfredini, F., & Merli, F. (1999). The temporal variability of carcinogenic polycyclic aromatic hydrocarbons in urban air: A study in a medium traffic area in Rome, 1993–1998. Atmospheric Environment, 33, 3739–3750. doi:10.1016/S1352-2310(99)00114-4.

    Article  CAS  Google Scholar 

  • Muraleedharan, T. R., Radojevic, M., Waugh, A., & Caruana, A. (2000). Chemical characterization of the haze in Brunei Darussalam during the 1998 episode. Atmospheric Environment, 34, 2725–2731. doi:10.1016/S1352-2310(99)00341-6.

    Article  CAS  Google Scholar 

  • Nielsen, T., Jørgensen, H. E., Larsen, J. C., & Poulsen, M. (1996). City air pollution of polycyclic aromatic hydrocarbons and other mutagens: Occurrence, sources and health effects. Science of the Total Environment, 189/190, 41–49, Oct 28.

    Article  CAS  Google Scholar 

  • Norramit, P., Cheevaporn, V., Itoh, N., & Tanaka, K. (2005). Characterization and carcinogenic risk assessment of polycyclic aromatic hydrocarbons in the respirable fraction of airborne particle in Bangkok metropolitan area. Journal of Health Science, 51, 437–446. doi:10.1248/jhs.51.43.7.

    Article  CAS  Google Scholar 

  • Panther, B. C., Hooper, M. A., & Tapper, N. J. (1999). A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments. Atmospheric Environment, 33, 4087–4099. doi:10.1016/S1352-2310(99)00150-8.

    Article  CAS  Google Scholar 

  • PCD: Pollution Control Department 2007a. Bangkok daily air quality data. Retrieved October 2007, from http://www.pcd.go.th/AirQuality/Bangkok/Default.cfm.

  • PCD: Pollution Control Department (2007b). Regional area air quality data retrieved October 2007, from http://www.pcd.go.th/AirQuality/Regional/Default.cfm.

  • Perkin Elmer Cooperation (1991). Users manual PE 2400 Series II CHNS/O analyser. Connecticut: Perkin Elmer.

    Google Scholar 

  • Qi, S. H., Wang, X. M., Fu, J. M., Sheng, G. Y., & Min, Y. S. (2000). Evaluation on pollution of priority polycyclic aromatic hydrocarbons in aerosols at different function areas of main cities in Pearl River delta economic region. Geochemistry, 29, 337–341.

    CAS  Google Scholar 

  • Radian International, LLC (1998). PM abatement strategy for the Bangkok metropolitan area, final report volume 1—report prepared for Pollution Control Department, Ministry of Science, Technology and Environment. Bangkok, Thailand.

  • Rogge, W. F., Hidlemann, L. M., Mazurek, M. A., & Cass, G. R. (1998). Sources of fine organic aerosol. 9. Pine, oak, and synthetic log combustion in residential fireplaces. Environmental Science and Technology, 32, 13–22. doi:10.1021/es960930b.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hidlemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993a). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environmental Science and Technology, 27, 636–651. doi:10.1021/es00041a007.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hidlemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993b). Sources of fine organic aerosol. 5. Natural gas home appliances. Environmental Science and Technology, 27, 2736–2744.

    Article  CAS  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33, 5071–5079. doi:10.1016/S1352-2310(99)00233-2.

    Article  CAS  Google Scholar 

  • The Federation of Thai Industries (2007). Retrieved October 2007 from http://www.ftiprovince.or.th/province/province.aspx?id=55&data=3.

  • Thongsanit, P. (2002). Polycyclic aromatic hydrocarbons size-selected particulate matter in the air environment of Bangkok. Dissertation: Chulalongorn University.

  • Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment, 19, 9–25. doi:10.1016/0004-6981(85)90132-5.

    Article  CAS  Google Scholar 

  • USEPA: United States Environmental Protection Agency (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. NC EPA-600/R-93/089. Research Triangle Park: US Environmental Protection Agency.

    Google Scholar 

  • USEPA: United States Environmental Protection Agency (1999a). Compendium of methods for the determination of inorganic compounds in ambient air selection, preparation, and extraction of filter material (compendium method IO-3.1). Cincinnati: U.S. Environmental Protection Agency.

    Google Scholar 

  • USEPA: United States Environmental Protection Agency (1999b). Compendium of methods for the determination of inorganic compounds in ambient air. determination of metals in ambient particulate matter using inductively coupled plasma (ICP) spectrometry (compendium method IO-3.4). Cincinnati: U.S. Environmental Protection Agency.

    Google Scholar 

  • Vestreng, V., & Klein, H. (2002). Emission data reported to UNECE/EMEP: Quality assurance and trend analysis and presentation of WebDab. MSC-W status report 2002. EMEP-MSC-W Note 1/2002. Oslo, Norway: Norwegian Meteorological Institute.

    Google Scholar 

  • Vinitketkumnuen, U., Kalayanamitra, K., Chewonarin, T., & Kamens, R. (2002). Particulate matter, PM 10 & PM 2.5 levels, and airborne mutagenicity in Chiang Mai, Thailand. Mutation Research, 519(1–2), 121–31, Aug 26.

    CAS  Google Scholar 

  • Wada, M., Kido, H., Kishikawa, N., Tou, T., Tanaka, M., Tsubokura, J., et al. (2001). Assessment of air pollution in Nagasaki city: Determination of polycyclic aromatic hydrocarbons and their nitrated derivatives, and some metals. Environmental Pollution, 115(1), 139–147.

    Article  CAS  Google Scholar 

  • Wangkiat, A., Harvey, N. W., Okamoto, S., Wangwongwatana, S., & Rachdawong, P. (2004). Characterisation for some emission sources in CMB calculation for Mae Moh area, Thailand. International Journal of Environment and Pollution, 21, 3. doi:10.1504/IJEP.2004.004191.

    Article  Google Scholar 

  • Watson, J. G., Chow, J. C., & Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35(9), 1567–1584. doi:10.1016/S1352-2310(00)00461-1.

    Article  CAS  Google Scholar 

  • Wenborn, M. J., Coleman, P. J., Passant, N. R., Lymberidi, E., & Weir, R. A. (1999). Speciated PAH inventory for the UK. Netcen, Report AEAT3512/REMC/20459131 Issue1. Harwell, Oxfordshire: AEA Technology.

    Google Scholar 

  • WHO: World Health Organization (1987). Polycyclic aromatic hydrocarbons (PAH). Air quality guidelines for Europe, WHO Regional Publications, European Series: no. 23, (pp. 105–107). Geneva, Switzerland: World Health Organization.

    Google Scholar 

  • Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environmental Pollution, 88, 91–108, Medline. doi:10.1016/0269-7491(95)91052-M.

    Article  CAS  Google Scholar 

  • Yang, H. H., Lai, S. O., Hsieh, L. T., Hsueh, H. J., & Chi, T. (2002). Profiles of PAH emission from steel and iron industries. Chemosphere, 48, 1061–1074, Medline. doi:10.1016/S0045-6535(02)00175-3.

    Article  CAS  Google Scholar 

  • Zhao, Y. L., Hu, M., Lanina, S. S., & Zhang, Y. H. (2007). Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environmental Science and Technology, 41, 99–105, Medline. doi:10.1021/es0614518.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petch Pengchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pengchai, P., Chantara, S., Sopajaree, K. et al. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Environ Monit Assess 154, 197–218 (2009). https://doi.org/10.1007/s10661-008-0389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0389-0

Keywords

Navigation