Skip to main content

Advertisement

Log in

Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

There is an abundance of field data for levels of metals from a range of places, but relatively few from the North Pacific Ocean and Bering Sea. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from common eiders (Somateria mollissima), glaucous-winged gulls (Larus glaucescens), pigeon guillemots (Cepphus columba), tufted puffins (Fratercula cirrhata) and bald eagles (Haliaeetus leucocephalus) from the Aleutian Chain of Alaska. Our primary objective was to test the hypothesis that there are no trophic levels relationships for arsenic, cadmium, chromium, lead, manganese, mercury and selenium among these five species of birds breeding in the marine environment of the Aleutians. There were significant interspecific differences in all metal levels. As predicted bald eagles had the highest levels of arsenic, chromium, lead, and manganese, but puffins had the highest levels of selenium, and pigeon guillemot had higher levels of mercury than eagles (although the differences were not significant). Common eiders, at the lowest trophic level had the lowest levels of some metals (chromium, mercury and selenium). However, eiders had higher levels than all other species (except eagles) for arsenic, cadmium, lead, and manganese. Levels of lead were higher in breast than in wing feathers of bald eagles. Except for lead, there were no significant differences in metal levels in feathers of bald eagles nesting on Adak and Amchitka Island; lead was higher on Adak than Amchitka. Eagle chicks tended to have lower levels of manganese than older eagles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ATSDR (2004). Public health assessment: Naval Air Facility, Adak. Retrieved January 1, 2006 from http://www.atsdr.cdc.vog/HAC/PHA/adak/ada_p1.html.

  • Bargagli, R., Monaci, F., Sanchez-Hernandez, J. C., & Cateni, D. (1998). Biomagnification of mercury in an Antarctic marine coastal food web. Marine Ecoogy Progress Series, 169, 65–76.

    Article  CAS  Google Scholar 

  • Borga, K., Campbell, L., Gabrielsen, G. W., Norstrom, R. J., Muir, D. C. G., & Fisk, A. T. (2006). Regional and species specific bioaccumulation of major and trace elements in arctic seabirds. Environmental Toxicology and Chemistry, 25, 2927–2936.

    Article  Google Scholar 

  • Braune, B. W. (1987). Comparison of total mercury levels in relation to diet and molt for nine species of marine birds. Archives of Environmental Contamination and Toxicology, 16, 217–224.

    Article  CAS  Google Scholar 

  • Braune, B. W., Donaldson, G. M., & Hobson, K. A. (2002). Contaminant residues in seabird eggs from the Canadian Arctic. II. Spatial trends and evidence from stable isotopes for intercolony differences. Environmental Polution, 117, 133–145.

    Article  CAS  Google Scholar 

  • Braune, B. W., & Gaskin, D. E. (1987). Mercury levels in Bonaparte’s gull (Larus Philadelphia) during autumn molt in the Quoddy region, New Brunswick, Canada. Archives of Environmental Contamination and Toxicology, 16, 539–549.

    Article  CAS  Google Scholar 

  • Burger, J. (1993). Metals in avian feathers: bioindicators of environmental pollution. Reviews in Environmental Toxicology, 5, 203–311.

    Google Scholar 

  • Burger, J., & Gochfeld, M. (1991). Cadmium and lead in common terns (Aves: Sterna hirundo): Relationship between levels in parents and eggs. Environmental Monitoring and Assessment, 16, 253–258.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (1997). Risk, mercury levels, and birds: relating adverse laboratory effects to field biomonitoring. Environmental Research, 75, 160–172.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2000a). Metals levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Science of the Total Environment, 257, 37–52.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2000b). Metals in albatross feathers from midway atoll: influence of species, age, and nest location. Environmental Research, 82, 207–221.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2000c). Effects of lead on birds (Laridae): a review of laboratory and field studies. Journal of Toxicology and Environmental Health, 3, 59–78.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2002). Effects of chemicals and pollution on seabirds. In E. A. Schreiber, & J. Burger (Eds.), Biology of marine birds (pp. 485–525). Boca Raton, FL: CRC.

    Google Scholar 

  • Burger, J., & Gochfeld, M. (2004). Metals levels in eggs of common tern (Sterna hirundo) in New Jersey: temporal trends from 1971–002. Environmental Research, 94, 336–343.

    Article  CAS  Google Scholar 

  • Burger, J., & Gochfeld, M. (2007). Radionuclides in birds and eggs from Amchitka and Kiska Islands in the Bering Sea/Pacific Ocean ecosystem. Environmental Monitoring and Assessment, 127, 105–117.

    Article  CAS  Google Scholar 

  • Burger, J, & Gochfeld, M. (2008). Mercury and other metals in feathers of common eiders (Somateria mollissima) and tufted puffin (Fratercula cirrhata) in the Aleutian Chain of Alaska. Archives of Environmental Contamination and Toxicology (in press).

  • Burger, J., Gochfeld, M., Irons, D., & Sullivan, K. (2007b). Heavy metals and selenium in pigeon guillemot (Cepphus columba) in mainland Alaska and the Aleutians. Science of the Total Environment, 387, 175–184.

    Article  CAS  Google Scholar 

  • Burger, J., Gochfeld, M., Jeitner, C., Burke, S., Stamm, T., Snigaroff, R., et al. (2007c). Mercury levels and potential risk from subsistence foods from the Aleutians. Science of the Total Environment, 384, 93–105.

    Article  CAS  Google Scholar 

  • Burger, J., Gochfeld, M., Jeitner, C., Burke, S., Volz, D., Snigaroff, R., et al. (2008). Mercury and other metals in feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians. Environmental Monioring and Assessment (in press)

  • Burger, J., Gochfeld, M., Kosson, D. S., & Powers, C. W. (2006a). Biomonitoring for ecosystem and human health protection at Amchitka Island. Piscataway, NJ: CRESP.

    Google Scholar 

  • Burger, J., Gochfeld, M., Kosson, D., Powers, C. W., Friedlander, B., Eichelberger, J., et al. (2005). Science, policy, and stakeholders: developing a consensus science plan for Amchitka Island, Aleutians, Alaska. Journal of Environmental Management, 35, 557–568.

    Article  Google Scholar 

  • Burger, J., Gochfeld, M., Kosson, D. S., Powers, C. W., Friedlander, B., Stabin, M., et al. (2007a). Radionuclides in marine fishes and birds from Amchitka and Kiska Islands in the Aleutians: establishing a baseline. Health Physics, 92, 265–279.

    Article  CAS  Google Scholar 

  • Burger, J., Jewett, S., Gochfeld, M., Hoberg, M., Harper, S., Chenelot, H., et al. (2006b). Can biota sampling for environmental monitoring be used to characterize benthic communities in the Aleutians? Science of the Total Environment, 369, 393–402.

    Article  CAS  Google Scholar 

  • Cottam, C. (1939). Food habits of North American diving ducks. Techn Bull. No. 643. Washington, DC: US Dept. Agric.

  • Custer, T. W., & Hoffman, W. L. (1994). Trace elements in canvasback (Aytha valisineria) wintering in Louisiana, USA, 1987–988. Environmental Pollution, 84, 253–259.

    Article  CAS  Google Scholar 

  • Eisler, R. (1985). Cadmium hazards to fish, wildlife and invertebrates: a synoptic review. Biological Report 85 (1.2). Washington DC: US Fish and Wildlife Service.

  • Eisler, R. (1987). Mercury hazards to fish, wildlife and invertebrates: a synoptic review. Biological Report 85 (1.10). Washington DC: US Fish and Wildlife Service.

  • Elliott, J. E., Scheuhammer, A. M., Leighton, F. A., & Pearce, P. A. (1992). Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds.. Archives of Environmental Contamination and Toxicology, 22, 63–73.

    Article  CAS  Google Scholar 

  • Evers, D. C., Burgess, N. M., Champous, L., Hoskins, B., Major, A., Goodale, W. M., et al. (2005). Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology, 14, 191–221.

    Google Scholar 

  • Ewins, P. J. (1993). Pigeon guillemot. Birds of North America, 49, 1–24.

    Google Scholar 

  • Fish and Wildlife Service (2004). Alaska subsistence spring/summer migratory bird harvest. Anchorage, AK: US Fish and Wildlife Service.

    Google Scholar 

  • Fitzgerald, W. F. (1989). Atmospheric and oceanic cycling of mercury. In J. P. Riley, & R. Chester (Eds.), Chemical oceanography, Vol. 10 (pp. 151–186). New York: Academic.

    Google Scholar 

  • Fitzgerald, W. F., Engstrom, D. R., Lamborg, C. H., Tseng, C. M., Balcom, P. H., & Hammerschmidt, C. R. (2005). Modern and historic atmospheric mercury fluxes in northern Alaska: global sources and Arctic depletion. Environmental Science and Technology, 39, 557–568.

    Article  CAS  Google Scholar 

  • Furness, R. W., & Camphuysen, K. C. J. (1997). Seabirds as monitors of the marine environment. Journal of Marine Science, 54, 726–723.

    Google Scholar 

  • Furness, R. W., Muirhead, S. J., & Woodburn, M. (1986). Using bird feathers to measure mercury in the environment: relationship between mercury content and moult. Marine Pollution Bulletin, 17, 27–37.

    Article  CAS  Google Scholar 

  • Furness, R. W., Rainbow, P. S. (Eds.) (1990). Heavy metals in the marine environment. Boca Raton, FL: CRC.

  • Gilbertson, M., Eliot, J. E., & Peakall, D. B. (1987). Seabirds as indicators of marine pollution. In A. W. Diamond, & F. Filion (Eds.), The value of birds (pp. 231–48). ICBP Tech. Publ. 6. Cambridge: International Council for Bird Preservation.

  • Goudie, R. I., Robertson, G. J., & Reed, A. (2000). Common eider. Birds of North America, 546, 1–32.

    Google Scholar 

  • Hahn, H., Hahn, K., & Stoeppler, M. (1993). Bird feathers as bioindicators in areas of the German Environmental Specimen Bank — Bioaccumulation of mercury in food chains and exogenous deposition of atmospheric pollution with lead and cadmium. Science of the Total Environment, 139, 259–270.

    Article  Google Scholar 

  • Hammerschmidt, C. R., Fitzgerald, W. F., Lamborg, C. H., Balcom, P. H., & Tseng, C. M. (2006). Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic Alaska. Environmental Science and Technology, 40, 1204–1211.

    Article  CAS  Google Scholar 

  • Hamrick, K., & Smith, J. (2003). Subsistence food use in Unalaska and Nikolski. Aleutian Pribilof Island Association, Anchorage, AK.

  • Heinz, G. H. (1996). Selenium in birds. In W. M. Beyer, & W. M. Heinz (Eds.), Environmental contaminants in wildlife: interpreting tissue concentrations (pp. 447–458). Boca Raton, FL: Lewis.

    Google Scholar 

  • Honda, K., Marcovecchio, J. E., Kan, S., Tatsukawa, R., & Ogi, H. (1990). Metal concentrations in pelagic seabirds from the North Pacific. Archives of Environmental Contamination and Toxicology, 19, 704–711.

    Article  CAS  Google Scholar 

  • Houghton, J. T., Callander, B. A., & Varney, S. K. (1992). Climate change 1992. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Irons, D. B., Anthony, R. G., & Estes, J. A. (1986). Foraging strategies of Glaucous-winged Gulls in a rocky intertidal community. Ecology, 67, 1460–1474.

    Article  Google Scholar 

  • Kenyon, K. W. (1961). Birds of Amchitka Island, Alaska. Auk, 78, 305–326.

    Google Scholar 

  • Kim, E. Y., Murakami, T., Saeki, D., & Tatsukawa, R. (1996). Mercury levels and its chemical form in tissues and organs of seabirds. Archives of Environmental Contamination andToxicology, 30, 259–266.

    Article  CAS  Google Scholar 

  • Lewis, S. A., & Furness, R. W. (1991). Mercury accumulation and excretion by laboratory reared black-headed Gulls (Larus ridibundus) chicks. Archives of Environmental Contamination and Toxicology, 21, 316–320.

    Article  CAS  Google Scholar 

  • Mailman, R. B. (1980). Heavy metals. In J. J. Perry (Ed.), Introduction to environmental toxicology (pp. 34–43). New York: Elsevier.

    Google Scholar 

  • Merritt, M. L., & Fuller, R. G. (Eds.). (1977). The environment of Amchitka Island, Alaska, U.S. Washington DC; Report NVO-79, Technical Information Center, Energy Research and Development Administration.

  • Monteiro, L. R. (1996). Seabirds as monitors of mercury in the marine environment. Water, Air, Soil Pollution, 80, 851–870.

    Article  Google Scholar 

  • Monteiro, L. R., & Furness, R. W. (1995). Seabirds as monitors of mercury in the marine environment. Water, Air, and Soil Pollution, 80, 831–870.

    Article  Google Scholar 

  • Nygard, T., Lie, E., Roy, N., & Steinnes, E. (2001). Metal dynamics in an Antarctic food chain. Marine Pollution Bulletin, 42, 598–602.

    Article  CAS  Google Scholar 

  • Patrick, R. (2002). How local Alaska native communities view the Amchitka issue. In Proceedings of the Amchitka Long-term Stewardship Workshop. CRESP/University of Alaska, Fairbanks, AK.

  • Peakall, D. B. (1992). Animal biomarkers as pollution indicators. London, UK: Chapman & Hall.

    Google Scholar 

  • Piatt, J. F., & Kitaysky, A. S. (2002). Tufted puffin. Birds of North America, 708, 1–32.

    Google Scholar 

  • Powers, C. W., Burger, J., Kosson, D., Gochfeld, M., & Barnes, D. (Eds) (2005). Biological and geophysical aspects of potential radionuclide exposure in the Amchitka marine environment. Piscataway, NJ: CRESP.

  • SAS (Statistical Analysis System) (1995). SAS users’ guide. Cary, North Carolina: SAS Institute.

    Google Scholar 

  • Scheifler, R., Gauthier-Clerc, M., LeBohec, C., Crini, N., Coeurdassier, M., Badot, P.-M., et al. (2005). Mercury concentrations in king penguin (Aptenodytes patagonicus) feathers at Crozet Islands (sub-Antarctic): temporal trend between 1966–974 and 2000–001. Environmental Toxicology and Chemistry, 24, 125–128.

    Article  CAS  Google Scholar 

  • Spry, D. J., & Wiener, J. G. (1991). Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical review. Environmental Pollution, 71, 243–304.

    Article  CAS  Google Scholar 

  • Stewart, F. M., Phillips, R. A., Catry, P., & Furness, R. W. (1997). Influence of species, age and diet on mercury concentrations in Shetland seabirds. Marine Ecology Progress Series, 151, 237–244.

    Article  CAS  Google Scholar 

  • Sydeman, W. J., & Jarman, W. M. (1998). Trace metals in seabirds, Steller sea lion, and forage fish and zooplankson from central California. Marine Pollution Bulletin, 36, 828–832.

    Article  CAS  Google Scholar 

  • Thompson, D. R., Bearhop, S., Speakman, J. R., & Furness, R. W. (1998). Feathers as a means of monitoring mercury in seabirds: insights from stable isotope analysis. Environmental Pollution, 101, 193–200.

    Article  CAS  Google Scholar 

  • Thompson, D. R., & Furness, R. W. (1998). Seabirds as biomonitors of mercury inputs to epipelagic and mesopelagic marine food chains. Science of the Total Environment, 213, 299–305.

    Article  CAS  Google Scholar 

  • Thompson, D. R., Hamer, K. C., & Furness, R. W. (1991). Comparison of the levels of total and organic mercury in seabird feathers. Marine Pollution Bulletin, 20, 577–579.

    Article  Google Scholar 

  • Trapp, J. L. (1979). Variation in summer diet of glaucous-winged gulls in the western Aleutian Islands: an ecological interpretation. Wilson Bulletin, 91, 412–419.

    Google Scholar 

  • Verbeek, N. A. M. (1993). Glaucous-winged gull (Larus glaucescens). Birds of North America, 59, 1–20.

    Google Scholar 

  • Walsh, P. M. (1990). The use of seabirds as monitors of heavy metals in the marine environment. In R. W. Furness, & P. S. Rainbow (Eds.), Heavy metals in the marine environment (pp. 183–204). Boca Raton, FL: CRC.

    Google Scholar 

  • Wayland, M., Gilchrist, H. G., & Neugebauer, E. (2005). Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: influence of reproductive stage. Science of theTotal Environment, 351, 323–332.

    Article  Google Scholar 

  • Wiener, J. G., & Spry, D. J. (1996). Toxicological significance of mercury in freshwater fish. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: interpreting tissue concentrations (pp. 297–339). Boca Raton, FL.: SETAC Special Publications, Lewis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Burger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, J., Gochfeld, M. Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska. Environ Monit Assess 152, 357–367 (2009). https://doi.org/10.1007/s10661-008-0321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0321-7

Keywords

Navigation