Skip to main content

Advertisement

Log in

Risk assessment of trihalomethanes from tap water in Fortaleza, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The cancer risks (CR) by oral ingestion, dermal absorption, and inhalation exposure of trihalomethanes (THM) from tap water of ten districts in Fortaleza, Brazil were estimated. The mean levels of THM compounds were obtained in Fortaleza tap water as follow: 63.9 μg L−1 for chloroform (CHCl3), 40.0 μg L−1 for bromodichloromethane (CHBrCl2), and 15.6 μg L−1 for dibromochloromethane (CHBr2Cl). Bromoform (CHBr3) was not detected. The mean CR for THMs in tap water is 3.96 × 10−4. The results indicate that Fortaleza residents have a higher CR by inhalation than dermal absorption and oral ingestion. The CR for CHCl3 contributes with 68% as compared with the total CR, followed by CHBrCl2 (21%), and CHBr2Cl (11%). The hazard index (HI) is about ten times lower than unity, not indicating non-cancer effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggazzotti, G., Fantuzzi, G., Tartoni, P. L., & Predieri, G. (1990). Plasma chloroform concentrations in swimmers using indoor swimming pools. Archives of Environmental Health, 45, 175–179.

    Article  CAS  Google Scholar 

  • Ali, M. Y. A., & Ripley, J. P. (1990). Distribution of halomethanes in potable waters of Kuwait. Water Research, 24, 533–538.

    Article  CAS  Google Scholar 

  • Attias, L., Contu, A., Loizzo, A., Massiglia, M., Valente, P., & Zapponi, G. A. (1995). Trihalomethanes in drinking water and cancer—Risk assessment and integrated evaluation of available data in animals and humans. Science of the Total Environment, 171, 61–68.

    Article  CAS  Google Scholar 

  • Backer, L. C., Ashley, D. L., Bonin, M. A., Cardinali, F. L., Kieszak, S. M., & Wooten, J. V. (2000). Household exposures to drinking water disinfection by-products: Whole blood trihalomethane levels. Journal of Exposure Analysis and Environmental Epidemiology, 10, 321–326.

    Article  CAS  Google Scholar 

  • Batterman, S., Huang, A. T., Wang, S. G., & Zhang, L. (2000). Reduction of ingestion exposure to trihalomethanes due to volatilization. Environmental Science Technology, 34, 4418–4424.

    Article  CAS  Google Scholar 

  • Boorman, G. A., Dellarco, V., Dunnick, J. K., Chapin, R. E., Hunter, S., Hauchman, F., et al. (1999). Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environmental Health Perspective, 107, 207–217.

    Article  CAS  Google Scholar 

  • Budziak, D., & Carasek, E. (2007). Determination of trihalomethanes in drinking water from three different water sources in Florianopolis-Brazil using purge and trap and gas chromatography. Journal of Brazilian Chemical Society, 18, 741–747.

    CAS  Google Scholar 

  • Cherrie, J. W., & Robertson, A. (1995). Biologically relevant assessment of dermal exposure. Annals of Occupational Hygiene, 39, 387–392.

    Article  CAS  Google Scholar 

  • Chow, A. T., Gao, S., & Dahlgren, R. A. (2005). Physical and chemical fractionation of dissolved organic matter and trihalomethane precursors: A review. Journal of Water Supply Research Technology-Aqua, 54, 475–507.

    CAS  Google Scholar 

  • Egorov, A. I., Tereschenko, A. A., Altshul, L. M., Vurtiainen, T., Samsonov, D., LaBrecque, B., et al. (2003). Exposures to drinking water chlorination by products in a Russian city. International Journal of Hygiene and Environmental Health, 206, 539–551.

    Article  CAS  Google Scholar 

  • Erdinger, L., Kuhn, K. P., Kirsch, F., Feldhues, R., Frobel, T., Nohyenek, B., et al. (2004). Pathways of trihalomethane uptake in swimming pools. International Journal of Hygiene and Environmental Health, 207, 571–575.

    Article  CAS  Google Scholar 

  • Fantuzzi, G., Righi, E., Predieri, G., Ceppelli, G., Gobba, F., & Aggazzotti, G. (2001). Occupational exposure to trihalomethanes in indoor swimming pools. Science of the Total Environment, 264, 257–265.

    Article  CAS  Google Scholar 

  • Gordon, S. M., Wallace, L. A., Callahan, P. J., Kenny, D. V., & Brinkman, M. C. (1998). Effect of water temperature on dermal exposure to chloroform. Environmental Health Perspective, 106, 337–345.

    Article  CAS  Google Scholar 

  • Graves, C. G., Matanoski, G. M., & Tardiff, R. G. (2001). Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: a critical review. Regulatory Toxicology Pharmacology, 34, 103–124.

    Article  CAS  Google Scholar 

  • Hsu, C. H., Jeng, W. L., Chang, R. M., Chien, L. C., & Han, B. C. (2001). Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan. Environmental Research, 85, 77–82.

    Article  CAS  Google Scholar 

  • IARC (1991). Chlorinated drinking-water; chlorination by-products; some other halogenated compounds; cobalt and cobalt compounds. IARC Monographs for the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 52. Lyon: International Agency for Research on Cancer.

    Google Scholar 

  • IARC (1999). Chloroform. Group 2B. IARC Monographs for the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 73. Lyon: International Agency for Research on Cancer.

    Google Scholar 

  • Jo, W. K., Kwon, K. D., Dong, J. I., & Chung, Y. (2005). Multi-route trihalomethane exposure in households using municipal tap water treated with chlorine or ozone-chlorine. Science of the Total Environment, 339, 143–152.

    Article  CAS  Google Scholar 

  • Jo, W. K., Weisel, C. P., & Lioy, P. J. (1990). Chloroform exposure and the health risk associated with multiple uses of chlorinated tap water. Risk Analysis, 10, 581–585.

    Article  CAS  Google Scholar 

  • Komulainen, H. (2004). Experimental cancer studies of chlorinated by-products. Toxicology, 198, 239–248.

    Article  CAS  Google Scholar 

  • Kuo, H. W., Chiang, T. F., Lo, I. I., Lai, J. S., Chan, C. C., & Wang, J. D. (1998). Estimates of cancer risk from chloroform exposure during showering in Taiwan. Science of the Total Environment, 218, 1–7.

    Article  CAS  Google Scholar 

  • LeBel, G. L., Benoit, F. M., & Williams, D. T. (1997). A one-year survey of halogenated disinfection by-products in the distribution system of treatment plants using three different disinfection processes. Chemosphere, 34, 2301–2317.

    Article  CAS  Google Scholar 

  • Lee, S. C., Guo, H., Lam, S. M. J., & Lau, S. L. A. (2004). Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environmental Research, 94, 47–56.

    Article  CAS  Google Scholar 

  • Levesque, B., Ayotte, P., Leblanc, A., Dewailly, E., Prudhomme, D., Lavoie, R., et al. (1994). Evaluation of dermal and respiratory chloroform exposure in humans. Environmental Health Perspective, 102, 1082–1087.

    Article  CAS  Google Scholar 

  • Lin, T. F., & Hoang, S. W. (2000). Inhalation exposure to THMs from drinking water in south Taiwan. Science of the Total Environment, 246, 41–49.

    Article  CAS  Google Scholar 

  • Little, J. C. (1992). Applying the two-resistance theory to contaminant volatilization in showers. Environmental Science Technology, 26, 1341–1349.

    Article  CAS  Google Scholar 

  • Miles, A. M., Singer, P. C., Ashley, D. L., Lynberg, M. C., Mendola, P., Langlois, P. H., et al. (2002). Comparison of trihalomethanes in tap water and blood. Environmental Science Technology, 36, 1692–1698.

    Article  CAS  Google Scholar 

  • Ministério da Saúde (2004) Diário Oficial da União. Brasília, DF: MS; Portaria No 518/2004.

  • Moudgal, C. J., Lipscomb, J. C., & Bruce, R. M. (2000). Potential health effects of drinking water disinfection by-products using quantitative structure toxicity relationship. Toxicology, 147, 109–131.

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen, M. J., Toledano, M. B., Eaton, N. E., Fawell, J., & Elliott, P. (2000). Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational Environmental Medicine, 57, 73–85.

    Article  CAS  Google Scholar 

  • Nuckols, J. R., Ashley, D. L., Lyu, C., Gordon, S. M., Hinckley, A. F., & Singer, P. (2005). Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes. Environmental Health Perspective, 113, 863–870.

    Article  CAS  Google Scholar 

  • Sadiq, R., Husain, T., & Kar, S. (2002). Chloroform associated health risk assessment using bootstrapping: A case study for limited drinking water samples. Water Air and Soil Pollution, 138, 123–140.

    Article  CAS  Google Scholar 

  • Staudinger, J., & Roberts, P. V. (2001). A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere, 44, 561–576.

    Article  CAS  Google Scholar 

  • Tokmak, B., Capar, G., Dilek, F. B., & Yetis, U. (2004). Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey. Environmental Research, 96, 345–352.

    Article  CAS  Google Scholar 

  • US EPA (1990). Exposure factors handbook. Office of health and environmental assessment. Washington, DC: EPA 600y8-89y043.

    Google Scholar 

  • US EPA (1999). Guidelines for carcinogen risk assessment. Risk assessment forum. U.S. Government Printing Office. Washington, DC: EPA NCEA-F-0644.

    Google Scholar 

  • US EPA (2006). Integrated risk information system (Electronic data base). U.S. Environmental Protection Agency; (January). http://www.epa.gov/iris.

  • Uyak, V. (2006). Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies. Environment International, 32, 12–21.

    Article  CAS  Google Scholar 

  • Valente, A. L. P., Augusto, F., Montero, L., da Rocha, E. C., & Pawliszyn, J. (1998). Application of SPME (solid phase micro-extraction) to the analysis of drinkable water from three locations in the state of São Paulo. Quimica Nova, 21, 804–806.

    Google Scholar 

  • Weisel, C. P., & Jo, W. K. (1996). Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water. Environmental Health Perspective, 104, 48–51.

    Article  CAS  Google Scholar 

  • Williams, P., Benton, L., Warmerdam, J., & Sheeham, P. (2002). Comparative risk analysis of six volatile organic compounds in California drinking water. Environmental Science Technology, 36, 4721–4728.

    Article  CAS  Google Scholar 

  • Xu, X., Mariano, T. M., Laskin, J. D., & Weisel, C. P. (2002). Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones. Toxicology and Applied Pharmacology, 184, 19–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel B. Viana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viana, R.B., Cavalcante, R.M., Braga, F.M.G. et al. Risk assessment of trihalomethanes from tap water in Fortaleza, Brazil. Environ Monit Assess 151, 317–325 (2009). https://doi.org/10.1007/s10661-008-0273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0273-y

Keywords

Navigation