Skip to main content
Log in

Determination of total chromium by flame atomic absorption spectrometry after coprecipitation by cerium (IV) hydroxide

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A method for the preconcentration of the total chromium based on coprecipitation with cerium (IV) hydroxide is proposed for determination of chromium by flame atomic absorption spectrometry. Different factors including carrier element amount, pH, sample volume and matrix ion effects for the precipitation were examined. The detection limit of the total chromium (k = 3, N = 15) was 0.18 μg l−1. The presented method was applied for the determination of chromium in the wastewater samples from Kayseri and Nigde Organized Industrial Region-Turkey and in drinking water from our laboratory, Kayseri with satisfactory results (relative standard deviations below 8%, recoveries 95%). The analytical results obtained by the proposed method for certified copper sample was in good agreement with the certified value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrera, P., Pineiro, J., Pineiro, A., & Barrera, A. (1998). Chromium determination in sea water by electrothermal atomic absorption spectrometry using Zeeman effect background correction and a multi-injection technique. Fresenius’ Journal of Analytical Chemistry, 360, 208–212.

    Article  Google Scholar 

  • Berman, E. (1980). Toxic metals and their analysis. London: Heyden.

    Google Scholar 

  • Berndt, H., & Jackwerth, E. (1975). Atomabsorptions-spektrometrische bestimmung kleiner substanzenmengen und analyse von spurenkonzentrat- mit der Injektionsmethode. Spectrochimica Acta, 30B, 169–177.

    CAS  Google Scholar 

  • Boughriet, A., Deram, L., & Wartel, M. (1994). Determination of Dissolved chromium (III) and chromium (VI) in sea-water by atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 9, 1135–1142.

    Article  CAS  Google Scholar 

  • Divrikli, U., & Elci, L. (2002). Determination of some trace metals in water and sediment samples by flame atomic absorption spectrometry after coprecipitation with cerium (IV) hydroxide. Analytica Chimica Acta, 52, 231–235.

    Article  Google Scholar 

  • Dogru, M., Gul-Guven, R., & Erdogan, S. (2007). The use of Bacillus subtilis immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. Journal of Hazardous Materials (in press).

  • Efendioglu, A., Yagan, M., & Batý, B. (2007). Bi(III)4-methylpiperidinedithiocarbamate coprecipitation procedure for separation preconcentration of trace metal ions in water samples by flame atomic absorption spectrometric determination. Journal of Hazardous Materials (in press).

  • Florence, T. M. (1982). The speciation of trace elements in waters. Talanta, 29, 345–364.

    Article  CAS  Google Scholar 

  • Gardner, M. J., & Ravencscroft, J. E. (1996). Determination of chromium(III) and total chromium in marine waters. Fresenius’ Journal of Analytical Chemistry, 354, 602–605.

    CAS  Google Scholar 

  • Hiraide, M., Cheng, Z., & Kawaguchi, H. (1997). Coprecipitation of traces of heavy metals with indium hydroxide for graphite-furnace atomic absorption spectrometry. Analytical sciences, 7, 65–68.

    Article  Google Scholar 

  • Hosseini, M. S., & Sarab, A. R. R. (2007). Cr(III)/Cr(VI) speciation in water samples by extractive separation using Amberlite CG-50 and final determination by FAAS. International Journal of Environmental Analytical Chemistry, 87, 375–385.

    Article  CAS  Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    Article  CAS  Google Scholar 

  • Li, X. A., Zhou, D. M., Xu, J. J., & Chen, H. Y. (2007). In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly(dimethylsiloxane) microchip. Talanta, 71, 1130–1135.

    Article  CAS  Google Scholar 

  • Marques, M. J., Salvador, A., Rubio, A. M., & Guardia, M. (2000). Chromium speciation in liquid matrices: A survey of the literature. Fresenius’ Journal of Analytical Chemistry, 367, 601–613.

    Article  CAS  Google Scholar 

  • Nakayama, E., Kuwamoto, T., Tsurubo, S., Tokoro, H., & Fujinaga, T. (1981). Chemical speciation of chromium in sea water. Analytica Chimica Acta, 130, 289–294.

    Article  CAS  Google Scholar 

  • Narin, I., Surme, Y., Soylak, M., & Dogan, M. (2006). Speciation of Cr(III) and Cr(VI) in environmental samples by solid phase extraction on Ambersorb 563 resin. Journal of Hazardous Materials, 136, 579–584.

    Article  CAS  Google Scholar 

  • Parks, L. L., McNeill, L., Frey, M., Eaton, A. D., Haghani, A., Ramirez, L., et al. (2004). Determination of total chromium in enviromental water samples. Water Research, 38, 2827–2838.

    Article  CAS  Google Scholar 

  • Saracoglu, S., Soylak, M., & Elci, L. (2003). Separation/preconcentration of trace heavy metals in urine, sediment and dialysis concentrates by coprecipitation with samarium hydroxide for atomic absorption spectrometry. Talanta, 59, 287–293.

    Article  CAS  Google Scholar 

  • Skoog, A. D., West, M. D., & Holler, F. J. (1996). Fundamentals of analytical chemistry. New York: Saunders College Publishing.

    Google Scholar 

  • Soylak, M., Saracoglu, S., Divrikli, U., & Elci, L. (2005). Coprecipitation of heavy metals with erbium hydroxide for their flame atomic absorption spectrometric determinations in environmental samples. Talanta, 66, 1098–1102.

    Article  CAS  Google Scholar 

  • Suleiman, J. S., Hu, B., Pu, X., Huang, C., & Jiang, Z. (2007). Nanometer-sized zirconium dioxide microcolumn Separation/preconcentration of trace metals and their determination by ICP-OES in environmental and biological samples. Microchimica Acta (in press).

  • Ueda, J., Satoh, H., & Kagaya, S. (1997). Determination of chromium (III) and chromium(VI) by graphite-furnace atomic absorption spectrometry after coprecipitation with hafnium hydroxide. Analytical Sciences, 13, 613–617.

    Article  CAS  Google Scholar 

  • Wattoo, M. H. S., Wattoo, F. H., Tirmizi, S. A., Kazi, T. G., Bhanger, M. I., & Qbal, J. I. (2006). Pollution of Phulali canal water in the city premises of Hyderabad: Metal monitoring. Journal of the Chemical Society of Pakistan, 28, 136–143.

    CAS  Google Scholar 

  • Zhitkovich, A. (2005). Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium (VI). Chemical Research in Toxicology, 18, 3–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit Divrikli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divrikli, U., Soylak, M. & Elci, L. Determination of total chromium by flame atomic absorption spectrometry after coprecipitation by cerium (IV) hydroxide. Environ Monit Assess 138, 167–172 (2008). https://doi.org/10.1007/s10661-007-9754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9754-7

Keywords

Navigation