Skip to main content

Advertisement

Log in

Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Surface sediment samples (n = 18) were collected from the Algerian Mediterranean coasts and analyzed for seven metals using inductively coupled plasma-optical emission spectrometry in order to asses the distribution and bioavailability of metals and to study the anthropogenic factors affecting their concentrations. Sediment samples were size-fractionated into three sizes: 1,080–500 (coarse), 500–250 (medium), and <250 mm (fine). Bulk sediments were subjected to both sequential extraction and total digestion to evaluate the reliability of the sequential extraction procedure (SEP), while the fractions have been only sequentially extracted for metals speciation. The metals were sequentially extracted into five phases namely exchangeable (P1), carbonates (P2), Fe–Mn oxides (P3), organic (P4) and residual (P5). Metal recoveries in sequential extractions were ±20% of the independently measured total metal concentrations; the high recovery rates indicate the good reliability of the SEP used in this study. Correlation coefficients indicated that the grain size has an effect on the distribution of metals in the investigated samples. The order of metal levels in the fractions was medium > fine > coarse for all the metals. The average total extractable metal concentrations for Cd, Cr, Cu, Fe, Ni, Pb, and Zn were 1.1, 8.8, 4.7, 1,291.3, 13.9, 5.7 and 20.4 μg/g, respectively. The northeastern shelf had the lowest metal levels while the highest were in northwestern part mainly due to the significant tourism activities in the northwestern part. Comparison of our results to Earth’s crust values and to previous studies points out that our samples were relatively unpolluted with respect to the heavy metals investigated; most of the metals are not from anthropogenic sources. Enrichment factors as the criteria for examining the impact of the anthropogenic sources of heavy metals were calculated, and it was observed that the investigated samples were not contaminated with Cr, Cu, and Fe, moderately contaminated with Ni, Pb, and Cd, and contaminated with Cd in some sites. The P5 phase had the highest percents of Cr, Cu, Fe, Ni, and Zn. Cadmium and lead were predominant in the P4 phase, while Cu, Fe and Zn were distributed in the order P5 > P3 > P4 > P2 > P1. The following order of bioavailability was found with the heavy metals Pb > Cr > Cd > Ni > Zn > Cu > Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afri-Mehnaoui, F. Z., Sahli, L., & Mehnaoui, S. (2004). Assessment of sediment trace metal level and biological quality of Rhumel River by using multivariate analysis. Environmetrics, 15, 435–446.

    Article  CAS  Google Scholar 

  • Algan, O., Balkis, N., Cagatay, M. N., & Sari, E. (2004). The sources of metal contents in the shelf sediments from the Marmara Sea, Turkey. Environmental Geology, 46, 932–950.

    Article  CAS  Google Scholar 

  • Al-Ghadban, A. N., & El-Sammak, A. (2005). Sources, distribution and composition of the suspended sediments, Kuwait Bay, Northern Arabian Gulf. Journal of Arid Environments, 60, 647–661.

    Article  Google Scholar 

  • Aloupi, M., & Angelidis, M. O. (2001). Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea, Greece. Marine Environmental Research, 52, 1–12.

    Article  CAS  Google Scholar 

  • Aloupi, M., & Angelidis, M. O. (2002). The significance of coarse sediments in metal pollution studies in the coastal zone. Water Air and Soil Pollution, 133, 121–131.

    Article  CAS  Google Scholar 

  • Angelidis, M. O., & Aloupi, M. (2000). Geochemical study of coastal sediments influenced by river-transported pollution: Southern Evoikos Gulf, Greece. Marine Pollution Bulletin, 40, 77–82.

    Article  CAS  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  CAS  Google Scholar 

  • Becerra, C. A. (2003) In the faculties of the department of civil engineering, geology, and biological sciences (p. 186). Los Angeles: California State University.

    Google Scholar 

  • Benamar, M. A., Toumert, I., Tobbeche, S., Tchantchane, A., & Chalabi, A. (1999). Assessment of the state of pollution by heavy metals in the surficial sediments Algiers Bay. Applied Radiation and Isotopes, 50, 975–980.

    Article  Google Scholar 

  • Buykx, S. E. J., Bleijenberg, M., Van Den Hoop, M. A. G. T., & Gustav Loch, J. P. (2000). The effect of oxidation and acidification on the speciation of heavy metals in sulfide-rich freshwater sediments using a sequential extraction procedure. Journal of Environmetal Monitoring, 2, 23–27.

    Article  CAS  Google Scholar 

  • Campbell, N. A., & Reece, J. B. (1991). Biology. San Francisco, USA: Basic Books.

    Google Scholar 

  • Caredda, A. M., Cristini, A., Ferrara, C., Lobina, M. F., & Baroli, M. (1999). Distribution of heavy metals in the Piscinas beach sediments (SW Sardinia, Italy). Environmental Geology, 38, 91–100.

    Article  CAS  Google Scholar 

  • Dean, J. G., & Lanouette, K. H. (1972). Removing heavy metals from waste water. Environmental Science & Technology, 6, 518–522.

    Article  CAS  Google Scholar 

  • Demirbas, A., Pehlivan, E., Gode, F., Altun, T., & Arslan, G. (2005). Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science, 282, 20–25.

    Article  CAS  Google Scholar 

  • Dodds-Smith, M. E., Johnson, M. S., & Thompson, D. J. (1992). Trace metal accumulation by the shrew Sorex Araneus: II. Tissue distribution in kidney and liver. Ecotoxicology and Environmental Safety, 24, 117–130.

    Google Scholar 

  • El-Hassan, T., & Jiries, A. (2001). Heavy metal distribution in valley sediments in wadi Al-Karak catchment area, south Jordan. Environmental Geochemistry and Health, 23, 105–116.

    Article  Google Scholar 

  • Everrarts, J. M. (1989). Heavy metals (Cu, Zn, Cd, Pb) in sediments of the Java Sea, estuarine and coastal areas of east Java and some deep-sea areas. Netherlands Journal of Sea Research, 23, 403–413.

    Article  Google Scholar 

  • Everrarts, J. M., & Fischer, C. V. (1992). The distribution of heavy metals (Cu, Zn, Cd, Pb) in the fine fraction of surface sediments of the North Sea. Netherlands Journal of Sea Research, 29, 323–331.

    Article  Google Scholar 

  • Farag, A. M., Mayb, T., Marty, G. D., Easton, M., Harper, D. D., Little, E. E., et al. (2006). The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquatic Toxicology, 76, 246–257.

    Article  CAS  Google Scholar 

  • Feldstein, T., Kashman, Y., Abelson, A., Fishelson, L., Mokady, O., Bresler, V., et al. (2003). Marine molluscs in environmental monitoring. III. Trace metals and organic pollutants in animal tissue and sediments. Helgoland Marine Research, 57, 212–219.

    Article  Google Scholar 

  • Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49, 910–915.

    Article  CAS  Google Scholar 

  • Fernex, F. E., Migon, C., & Chisholm, J. R. M. (2001). Entrapment of pollutants in mediterranean sediments and biogeochemical indicators of their impact. Hydrobiologia, 450, 31–46.

    Article  CAS  Google Scholar 

  • Frignani, M., & Belluci, L. G. (2004). Heavy metals in marine coastal sediments: Assessing sources, fluxes, history and trends. Annali di Chimica, 94, 1–8.

    Article  Google Scholar 

  • Goyer, R. A. (1986). Toxic effects of metals. New York: Basic Books.

    Google Scholar 

  • Gratten, J. P., Huxley, S. I., & Pyatt, F. B. (2003). Modern Bedouin exposure to copper contamination: An imperial legacy? Ecotoxicology and Environmental Safety, 55, 108–115.

    Article  CAS  Google Scholar 

  • Herron, M. M., Langway, C. C., & Herbert, J. V. (1977). Atmospheric trace metals and sulfate in the Greenland Ice Sheet. Geochimica and Cosmochimica Acta, 41, 915–920.

    Article  CAS  Google Scholar 

  • Herut, B. (1997). Sources and distribution of trace and minor elements in the western Dead Sea surface sediments. Applied Geochemistry, 12, 497–505.

    Article  CAS  Google Scholar 

  • Herut, B., & Halicz, L. (2004) Eilat, pp. 1–12.

  • HMRC (2003) Vashon Press, Washington, USA, pp. 1–10.

  • Homady, M., Hussein, H., Jiries, A., Mahasneh, A., Al-Nasir, F., & Khleifat, K. (2002). Survey of some heavy metals in sediments from vehicular service stations in Jordan and their effects on social aggression in prepubertal male mice. Environmental Research A, 89, 43–49.

    Article  CAS  Google Scholar 

  • Howari, F. M., & Banat, K. M. (2001). Assessment of Fe, Zn, Cd, Hg, and Pb in the Jordan and Yarmouk River sediments in relation to their physico-chemical properties and sequential extraction characterization. Water, Air, and Soil Pollution, 132, 43–59.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y. (2006). Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere, 63, 762–771.

    Article  CAS  Google Scholar 

  • Hwang, H. M., Green, P. G., Higashi, R. M., & Young, T. M. (2006). Tidal salt marsh sediment in California, USA. Part 2: Occurence and anthropogenic input of trace metals. Chemosphere, 64(11), 1899–1909.

    Article  CAS  Google Scholar 

  • Jdid, E. A., Blazy, P., Kamoun, S., Guedria, A., Marouf, B., & Kitane, S. (1999). Environmental impact of mining activity on the pollution of the Medjerda river, north west Tunisia. Bulletin of Engineering Geology and the Environment, 57, 273–280.

    Article  Google Scholar 

  • Jiries, A. (2003). Vehicular contamination of dust in Amman, Jordan. Environmentalist, 23, 205–210.

    Article  Google Scholar 

  • Jordanova, A., Strezov, A., Ayranov, M., Petkov, N., & Stoilova, T. (1999). Heavy metal assessment in algae, sediments and water from the Bulgarian Black Sea coast. Water Science and Technology, 39, 207–212.

    Article  CAS  Google Scholar 

  • Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., & Hemond, H. F. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science & Technology, 35, 2778–2784.

    Article  CAS  Google Scholar 

  • Kim, K. W., Myung, J. H., Ahn, J. S., & Chon, H. T. (1998). Heavy metal contamination in dusts and stream sediments in the Taejon area, Korea. Journal of Geochemical Exploration, 64, 409–419.

    Article  CAS  Google Scholar 

  • Kiratli, N., & Ergin, M. (1996). Partitioning of heavy metals in surface Black Sea sediments. Applied Geochemistry, 11, 775–788.

    Article  CAS  Google Scholar 

  • Lakhan, V. C., Cabana, K., & LaValle, P. D. (2003). Relationship between grain size and heavy metals in sediments from beaches along the coast of Guyana. Journal of Coastal Research, 19, 600–608.

    Google Scholar 

  • Langston, W. J., Burt, G. R., & Pope, N. D. (1999). Bioavailability of metals in sediments of the Dogger Bank (Central North Sea): A mesocosm study. Estuarine, Coastal and Shelf Science, 48, 519–540.

    Article  CAS  Google Scholar 

  • Leivuori, M. (1998). Heavy metal contamination in surface sediments in the gulf of Finland and comparison with the gulf of Bothina. Chemosphere, 36, 43–59.

    Article  CAS  Google Scholar 

  • Leivuori, M., & Niemisto, L. (1995). Sedimentation of trace metals in the gulf of Bothina. Chemosphere, 31, 3839–3856.

    Article  CAS  Google Scholar 

  • Li, X., Poon, C., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Loring, D. H., Dahle, S., Naes, K., Dos Santos, J., Skei, J. M., & Matishov, G. G. (1998). Arsenic and other trace metals in sediments from the Kara Sea and the Ob and Yenisey estuaries, Russia. Aquatic Geochemistry, 4, 233–252.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.

    Article  CAS  Google Scholar 

  • Martin, J. M., Nirel, P., & Thomas, A. J. (1987). Sequential extraction techniques: Promises and problems. Marine Chemistry, 22, 313–341.

    Article  CAS  Google Scholar 

  • Mason, B., & Moore, C. B. (1991). Principles of geochemistry. New Delhi: Basic Books.

    Google Scholar 

  • Massadeh, A. M., Tahat, M., Jaradat, Q. M., & Al-Momani, I. F. (2004). Lead and cadmium contamination in roadside soils in Irbid City, Jordan: A case study. Soil & Sediment Contamination, 13, 347–359.

    Article  CAS  Google Scholar 

  • Mil-Homens, M., Stevens, R. L., Boer, W., Abrantes, F., & Cato, I. (2006). Pollution history of heavy metals on the Portuguese shelf using 210Pb-geochronology. Science of the Total Environment, 367, 446–480.

    Article  CAS  Google Scholar 

  • Mwamburi, J. (2003). Variations in trace elements in bottom sediments of major rivers in Lake Victoria’s basin, Kenya. Lakes and Reservoirs: Research and Management, 8, 5–13.

    Article  CAS  Google Scholar 

  • Niencheski, L. F. H., Baraj, B., Franca, R. G., & Mirlean, N. (2002). Lithium as a normalizer for the assessment of anthropogenic metal contamination of sediments of the southern area of Patos Lagoon. Aquatic Ecosystem Health & Management, 5, 473–483.

    Article  CAS  Google Scholar 

  • Nolting, R. F., Ramkema, A., & Everaarts, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni, and Pb in sediments cores from the continental slope ob the Banc d’Arguin (Mauritania). Continental Shelf Research, 19, 665–691.

    Article  Google Scholar 

  • Pais, I., & Benton Jones, J. J. (1997) St. Lucie Press, Boca Raton, Florida.

  • Parekh, P. P., Ghauri, B., & Hussain, L. (1989). Identification of pollution sources of anomalously enriched elements. Atmospheric Environment, 23, 1435–1442.

    Article  CAS  Google Scholar 

  • Pempkowiak, J., Sikora, A., & Biernacka, E. (1999). Speciation of heavy metals in marine sediments versus their bioaccumulation by mussels. Chemosphere, 39, 313–321.

    Article  CAS  Google Scholar 

  • Petronio, B. M., Pietrantonio, M., Pietroleti, M., & Cardellicchio, N. (2000) In 8th FECS conference, pp. 3.20.

  • Piani, R., Covelli, S., & Biester, H. (2005). Mercury contamination in Marano Lagoon (Northern Adriatic Sea, Italy): Source identification by analyses of Hg phases. Applied Geochemistry, 20, 1546–1559.

    Article  CAS  Google Scholar 

  • Pueyo, M., Rauret, G., Lu¨ck, D., Yli-Halla, M., Muntau, H., Quevauvillere, P., et al. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimized three-step sequential extraction procedure. Journal of Environmental Monitoring, 3, 243–250.

    Article  CAS  Google Scholar 

  • Ravanelli, M., Tubertini, O., Valcher, S., & Martinotti, W. (1997). Heavy metal distribution in sediment cores from Western Ross Sea (Antarctica). Water, Air and Soil Pollution, 99, 697–704.

    CAS  Google Scholar 

  • Ridgway, J., Breward, N., Langston, W. J., Lister, R., Rees, J. G., & Rowlatt, S. M. (2003). Distinguishing between natural and anthropogenic sources of metals entering the Irish Sea. Applied Geochemistry, 18, 283–309.

    Article  CAS  Google Scholar 

  • Rivaro, P., Ianni, C., Massolo, S., Ruggieri, N., & Frache, R. (2004). Heavy metals in Albanian coastal sediments. Toxicology and Environmental Chemistry, 86, 87–99.

    Article  CAS  Google Scholar 

  • Robards, K., & Worsfold, P. (1991). Cadmium toxicity and analysis, A Review. Analyst, 116, 549–568.

    Article  CAS  Google Scholar 

  • Santamaria-Fernandez, R., Cave, M. R., & Hill, S. J. (2005). Trace metal distribution in the Arosa estuary (N.W. Spain): The application of a recently developed sequential extraction procedure for metal partitioning. Analytica Chimica Acta, 557(1–2), 344–352.

    Google Scholar 

  • Sari, E., & Catagay, M. N. (2001). Distributions of heavy metals in the surface sediments of the gulf of Saros, NE Aegean Sea. Environment International, 26, 169–173.

    Article  CAS  Google Scholar 

  • Savvides, C., Papadopoulos, A., Haralambous, K. J., & Loizidou, M. (1995). Sea sediments contaminated with heavy metals: Metal speciation and removal. Water Science and Technology, 32, 65–73.

    Article  CAS  Google Scholar 

  • Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48, 161–176.

    Article  CAS  Google Scholar 

  • Secrieru, D., & Secrieru, A. (2002). Heavy metal enrichment of man-made origin of superficial sediment on the continental shelf of the Northwestern Black Sea. Estuarine, Coastal and Shelf Science, 54, 513–526.

    Article  CAS  Google Scholar 

  • Spencer, K. L., & MacLeod, C. L. (2002). Distribution and partitioning of heavy metals in estuarine sediment cores and implications for the use of sediment quality standards. Distribution and partitioning Hydrology and Earth System Sciences, 6, 989–998.

    Google Scholar 

  • Sulivan, P., & Taylor, K. G. (2003). Sediment and porewater geochemistry in a metal contaminated estuary, Dulas Bay, Anglesey. Environmental Geochemistry and Health, 25, 115–122.

    Article  Google Scholar 

  • Svete, P., Milacic, R., & Pihlar, B. (2001). Partitioning of Zn, Pb and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure. Journal of Environmental Monitoring, 3, 586–590.

    Article  CAS  Google Scholar 

  • Tack, F. M. G., & Verloo, M. G. (1999). Single extractions versus sequential extraction for the estimation of heavy metal fractions in reduced and oxidized dredged sediments. Chemical Speciation and Bioavailability, 11, 43–50.

    CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tkalin, A. V., Presley, B. J., & Boothe, P. N. (1996). Spatial and temporal variations of trace metals in bottom sediments of Peter the Great Bay, the Sea of Japan. Environmental Pollution, 92, 73–78.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Birol, G. (2003). Application of a three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils. Turkish Journal of Chemistry, 27, 333–346.

    CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Elçi, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413, 33–40.

    Article  CAS  Google Scholar 

  • Topcuoglu, S., Kirbasoglu, C., & Gungor, N. (2002). Heavy metals in organisms and sediments from Turkish coast of the Black Sea, 1997–1998. Environment International, 27, 521–526.

    Article  CAS  Google Scholar 

  • Topcuoglu, S., Kirbasoglu, C., & Yilmaz, Y. Z. (2004). Heavy metal levels in biota and sediments in the Northern coast of the Marmara Sea. Environmental Monitoring and Assessment, 96, 183–189.

    Article  CAS  Google Scholar 

  • Trefry, J. H., Rember, R. D., Trocine, R. P., & Brown, J. S. (2003). Trace metals in sediments near offshore oil exploration and production sites in the Alaskan Arctic. Environmental Geology, 45, 149–160.

    Article  CAS  Google Scholar 

  • Valdes, J., Vargas, G., Siffedine, A., Ortlieb, L., & Guinez, M. (2005). Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23 S), Northern Chile: Geochemical and statistical approach. Marine Pollution Bulletin, 50, 1558–1568.

    Article  CAS  Google Scholar 

  • Vallius, H. (1999). Anthropogenically derived heavy metals in recent sediments of the gulf of Finland, Baltic Sea. Chemosphere, 38, 945–962.

    Article  CAS  Google Scholar 

  • Weast, R. C., & Astle, M. J. (1982) CRC, Boca Raton, Florida.

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, S., & Shan, X. (2001). Effect of sample pretreatment upon the metal speciation in sediments by a sequential extraction procedure. Chemical Speciation and Bioavailability, 13, 69–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Alomary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alomary, A.A., Belhadj, S. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environ Monit Assess 135, 265–280 (2007). https://doi.org/10.1007/s10661-007-9648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9648-8

Keywords

Navigation