Skip to main content
Log in

Eutrophication and Sedimentation Patterns in Complete Exploitation of Water Resources Scenarios: An Example from Northwestern Semi-arid Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water requirements to supply human needs lead water stakeholders to store more water during surplus periods to fulfil the demand during – not only – scarcity periods. At the reservoirs, mostly those in semi-arid regions, water level then fluctuates extremely between rises and downward during one single year. Besides of water management implications, changes on physical, chemical and biological dynamics of these drawdown and refilling are little known yet. This paper shows the results, throughout a year, on solids, nutrients (N and P), chlorophyll-a, and sedimentation changes on the dynamics, when the former policy was applied in a reservoir from the semi-arid Northwestern Mexico. Water level sinusoidal trend impinged changes on thermal stratification and mixing, modifying nutrient cycling and primary producer responses. According to nitrogen and phosphorus concentration as well as chlorophyll-a, reservoir was mesotrophic, becoming hypertrophic during drawdown. Nutrient concentrations were high (1.22 ± 0.70 and 0.14 ± 0.12 mg P l−1), increasing phosphorus and lowering N:P significantly throughout the study period, although no intensive agricultural, no urban development, neither industrial activities take place in the watershed. This suggests nutrient recycling complex mechanisms, including nutrient release from the sediment–water interface as the main nutrient pathway when shallowness, at the same time as mineralization, increases. Outflows controlled nitrogen and phosphorus availability on the ecosystem while organic matter depended on river inflows. As on other subtropical aquatic ecosystems, nitrogen limited primary productivity (Spearman correlation R = 0.75) but chlorophyll-a seasonal pattern showed an irregular trend, prompting other no-nutrient related limitants. Shallowness induced a homogeneous temporal pattern on water quality. This observed temporal variability was mainly explained statistically by changes on solids (mineral and organic), chlorophyll-a and flows (62.3%). Annual sedimentation rates of total solids ranged from 11.73 to 16.29 kg m−2 year−1 with organic matter comprising around 30%. N:P ratio on sedimentation rates were as high as could be expected in a resuspension dominated ecosystem, and spatially inverse related with N:P ratio on bottom sediments. Distance from river inlet into the reservoir reveals a marked spatial heterogeneity on solid and nitrogen sedimentation, showing the system dependence on river inflows and supporting resuspension as the main phosphorus pathway. Accretion rates (2.19 ± 0.40 cm year−1) were not related to hydrological variability but decreased with the distance to the river input. Total sediment accumulation (9,895 tons km−2 year−1) denotes siltation as other serious environmental problem in reservoirs but possibly not related with operational procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1998). Standard methods for the examination of water and wastewater (20th ed.) Washington: American Public Health Association.

    Google Scholar 

  • Arfi, R. (2003). The effects of climate and hydrology on the trophic status of Sélingué Reservoir, West Africa. Lakes and Reservoirs Research and Management, 8, 247–257.

    Article  Google Scholar 

  • Barica, J., & Mur, L. R. (1980). Hypertrophic ecosystems. Development on Hydrobiology, 2, 9–11.

    Google Scholar 

  • Bloesch, J. (1996). Towards a new generation of sediment traps and a better measurement/understanding a setting particulate flux in lakes and oceans: A hydrodynamic protocol. Aquatic Science, 58, 283–296.

    Article  Google Scholar 

  • de Anda, J., Shear, H., Maniak, U., & Riedel, G. (2001). Phosphates in Lake Chapala, Mexico. Lakes and Reservoirs: Research and Management, 6, 313–321.

    Article  Google Scholar 

  • de Jonge, V. N., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia, 475/476, 1–19.

    Article  Google Scholar 

  • Downing, J. A., & MacCauley, E. (1992) The nitrogen : Phosphorus relationship in lakes. Limnology and Oceanography, 37, 936–945.

    Article  CAS  Google Scholar 

  • Eckert, W., Didenko, J., Uri, E., & Eldar, D. (2003). Spatial and temporal variability of particulate phosphorus fractions in seston and sediments of Lake Kinneret under changing loading scenario. Hydrobiologia, 494, 223–229.

    Article  CAS  Google Scholar 

  • Geraldes, A. M., & Boavida, M. J. (1999). Limnological comparison of a new reservoir with one almost 40 years old which had been totally emptied and refilled. Lakes and Reservoirs Research and Management, 4, 15–22.

    Article  Google Scholar 

  • Gin, K. Y. H., Zhang, Q. Y., Chan, E. S., & Chou, L. M. (2001). Three-dimensional ecological-eutrophication model for Singapore. Journal of Environmental Engineering, 127, 928–937.

    Article  CAS  Google Scholar 

  • Gochis, D. J., Leal, J. C., Shuttleworth, W. J., Watts, C. J., & Garatuza-Payan, J. (2003). Preliminary diagnostics from a new event-based precipitation monitoring system in support of the North American monsoon experiment. Journal of Hydrometeorology, 4, 974–981.

    Article  Google Scholar 

  • Håkanson, L. (2004). Internal loading: A new solution to an old problem in aquatic sciences. Lakes and Reservoirs: Research and Management, 9, 3–23.

    Article  Google Scholar 

  • Harper, D. (1992). Eutrophication of freshwater: Principles, problems and restoration. London: Chapman & Hall.

    Google Scholar 

  • Howard, R. F., & Singer, M. J. (1981). Measuring forest soil bulk density using irregular hole, paraffin clod, and air permeability. Forest Science, 27, 316–322.

    Google Scholar 

  • Huszar, V. L. M., Caraco, N. F., Roland, F., & Cole, J. (2006). Nutrient–chorophyll relationships in tropical–subtropical lakes: Do temperate models it? Biogeochemistry, 79, 239–250.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1957). A treatise on Limnology, vol I. Geography, Physics and Chemistry. New York: Wiley.

    Google Scholar 

  • INEGI (2001). Núcleos agrarios de Sonora: tabulados básicos por municipio 1992–2001. México DF: Instituto Nacional de Estadística, Geografía e Informática.

    Google Scholar 

  • Krogerus, K., & Ekholm, P. (2003). Phosphorus in settling matter and bottom sediments in lakes loaded by agriculture. Hydrobiologia, 429, 15–18.

    Article  Google Scholar 

  • Lewis, W. M., Jr. (2000). Basis for the protection and management of tropical lakes. Lakes and Reservoirs Research and Management, 5, 35–48.

    Article  Google Scholar 

  • Lewis, W. M. Jr. (2002). Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie, 28, 210–213.

    Google Scholar 

  • Marker, A. F. H., Nusch, E. A., Rai, H., & Riemann, B. (1980).The measurement of photosynthetic pigments in freshwaters and standarisation of methods: conclusions and recommendations. Archiv für Hydrobiologie, 14, 91–106.

    CAS  Google Scholar 

  • Naghavi, B., & Adrian, D. D. (1993). Transient response of lake systems to phosphorus. Journal of Environmental and System, 229, 137–149.

    Google Scholar 

  • Naselli-Flores, L. (2003). Man-made lakes in Mediterranean semi-arid climate: The strange case of Dr Deep and Mr Shallow Lake. Hydrobiologia, 506–509, 13–21.

    Article  Google Scholar 

  • Navarro, J. M. (2003). Clasificación de la cobertura vegetal y uso del suelo en la cuenca del Río Yaqui y detección de cambios temporales usando datos del satélite LANDSAT MSS. Master dissertation, Instituto Tecnológico de Sonora.

  • Nogueira, M. G., Henry, R., & Maricatto, F. E. (1999). Spatial and temporal heterogeneity in the Jurumirim Reservoir, São Paulo, Brazil. Lakes and Reservoirs: Research and Management, 4, 107–120.

    Article  Google Scholar 

  • Nõges, P., Järvet, A., Tuvikene, L., & Nõges; T. (1998). The budgets of nitrogen and phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia, 363, 219–227.

    Article  Google Scholar 

  • Palau, Y. A. (2002). La sedimentación en embalses: medidas preventivas y correctoras. Madrid: Dirección de Medio Ambiente y Calidad – Endesa Servicios.

    Google Scholar 

  • Peeters, F., Piepke, G., & Gloor, M. (1997). A diffusion model for the development of a boundary layer in lakes. Aquatic Science, 59, 95–114.

    Article  Google Scholar 

  • Petterson, K. (1998). Mechanisms for internal loading of phosphorus in lakes. Hydrobiology, 373–374, 21–25.

    Article  Google Scholar 

  • Quintana, X. D., Comín, F. A., & Moreno-Amich, R. (1998). Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 2: Response of a zooplanktoon comunity to disturbances. Journal of Plankton Research, 20, 2109–2127.

    Article  Google Scholar 

  • Ramm, K., & Scheps, V. (1997). Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia, 342–343, 43–53.

    Article  Google Scholar 

  • Reddy, C. N., DeLaune, R. D., DeBusk, W. F., & Koch, M. S. (1993). Long-term nutrient accumulation rates in the Everglades. Soil Science Society of American Journal, 57, 1147–1155.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Fisher, M. M., & Ivanoff, D. (1996). Resuspension and diffusive flux of nitrogen and phosphorus in a hypertrophic lake. Journal of Environmental Quality, 25, 363–371.

    Article  CAS  Google Scholar 

  • Reddy, K. R., O’Connor, G. A., & Schelske, C. L. (Eds.) (1999). Phosphorus biogeochemistry in subtrophical ecosystems. Boca Raton: Lewis.

  • Reynolds, C. S. (1992). Eutrophication and the management of plankton algae: What Vollenweider couldn’t tell us. In D. W. Sutcliffe & J. G. Jones (Eds.), Eutrophication: Research and application to water supply (pp. 4–29). Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Ruley, J. E., & Rusch, K. A. (2004). Development of a simplified phosphorus management model for a shallow, subtrophical, urban hypereutrophic lake. Ecological Engineering, 22, 77–98.

    Article  Google Scholar 

  • Ryding, S. O., & Rast, W. (1989). The control of eutrophication of lakes and reservoirs. New Jersey: Parthenon.

    Google Scholar 

  • Sánchez-Carrillo, S., & Alvarez-Cobelas, M. (2001). Nutrient dynamics and eutrophication patterns in a semi-arid wetland: The effects of a fluctuating hydrology. Water Air and Soil Pollution, 131, 97–118.

    Article  Google Scholar 

  • Sánchez-Carrillo, S., Alvarez-Cobelas, M., & Angeler, D. G. (2001). Sedimentation in the semi-arid freshwater wetland Las Tablas de Daimiel (Spain). Wetlands, 21, 112–124.

    Article  Google Scholar 

  • Scharf, W. (2002). Refilling, ageing and water quality management of Brucher Reservoir. Lakes and Reservoirs: Research and Management, 7, 13–23.

    Article  CAS  Google Scholar 

  • Serruya, C. (1976). Rates of sedimentation and resuspension in Lake Kinneret. In H. L. Golterman (Ed.), Interactions between Sediments and Freshwater (pp. 48–56). The Hague: Dr. W. Junk.

    Google Scholar 

  • Settacharnwit, S., Buckney, R. T., & Lim, R. P. (2003). The nutrient status of Nong Han, a shallow tropical lake in north-eastern Thailand: Spatial and temporal variations. Lakes and Reservoirs: Research and Management, 8, 189–200.

    Article  CAS  Google Scholar 

  • Skei, J., Larsson, P., Rosenberg, R., Jonsson, P., Olsson, M., & Broman, D. (2000). Eutrophication and contaminants in aquatic ecosystems. Ambio, 29, 184–194.

    Article  Google Scholar 

  • Sondergaard, M., Jensen, J. P., & Jeppesen, E. (1999). Internal phosphorus loading in shallow danish lakes. Hydrobiologia, 408–409, 145–152.

    Article  Google Scholar 

  • Sparks, D. L. (Ed.) (2002). Methods of Soil Analysis Part 3: Chemical Methods. Madison: Soil Science Society of America Book Series, no. 5.

  • Statsoft Inc. (2001). STATISTICA v6.1 for windows. Tulsa: Statsoft Incorporation.

    Google Scholar 

  • Straškraba, M., & Tundisi, J. G. (1999). Reservoir ecosystem functioning: theory and applications. In J. G. Tundisi & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 565–597). Leiden: Backhuys.

    Google Scholar 

  • Thornton, J. A. (1980). Comparison of the summer phosphorous loading, to three Zimbabwean water supply reservoirs of varying trophic states. Water SA, 6, 163–170.

    CAS  Google Scholar 

  • Townsend, S. A. (1999). The seasonal pattern of dissolved oxygen, and hypolimnetic deoxygenation, in two tropical Australian reservoirs. Lakes and Reservoirs: Reseach and Management, 4, 41–53.

    Article  Google Scholar 

  • Verstraeten, G., Poesen, J., de Vente, J., & Koninckx, X. (2003). Sediment yield variability in Spain: A quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology, 50, 327–348.

    Article  Google Scholar 

  • Vinçon-Leite, B., Tassin, B., & Druart, J. C. (2002). Phytoplankton variability in Lake Bourget: Phytoplankton dynamics and meteorology. Lakes and Reservoirs: Research and Management, 7, 93–102.

    Article  Google Scholar 

  • Volohonsky, H., Shaham, G., & Gophen, M. (1992). The impact of water inflow reduction on the trophic status of lakes. Ecological Modelling, 62, 135–147.

    Article  CAS  Google Scholar 

  • WCD (2000). Dams and development. A new framework for decision making. Report of the World Commission on Dams. London: Earthscan.

    Google Scholar 

  • Wetzel, R. G. (1990). Land–water interfaces: Metabolic and limnological regulators. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie, 24, 6–24.

    Google Scholar 

  • White, P. (1993). Environmental problems in the peat moorlands of the Southern Pennines: Reservoir sedimentation and the discolouration of water supplies. In J. C. Currie & A. T. Pepper (Eds.), Water and the environment (pp. 246–263). Chichester: Ellis Horwood.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Sánchez-Carrillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Carrillo, S., Alatorre, L.C., Sánchez-Andrés, R. et al. Eutrophication and Sedimentation Patterns in Complete Exploitation of Water Resources Scenarios: An Example from Northwestern Semi-arid Mexico. Environ Monit Assess 132, 377–393 (2007). https://doi.org/10.1007/s10661-006-9541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9541-x

Keywords

Navigation