Skip to main content

Advertisement

Log in

Externalities of Fugitive Dust

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

It is known that fugitive dust can cause human health and environmental problems, alone or in combination with other air pollutants. These problems are referred to as ‘external costs’ that have been traditionally ignored. However, there is a growing interest towards quantifying externalities to assist policy and decision-making. With this in mind, the present study aimed at discussing the environmental regulations that deal with fugitive dust, the impact of fugitive dust on human health and global climate system, and the available methods for calculating fugitive dust externalities. The damage cost associated with human health and global environmental problems was predicted based on the environmental strategy priority model. The damage cost estimated by the model ranged from 40 to 374 EUR/kg of emitted fugitive dust with a mean value of 120 EUR/kg of emitted fugitive dust. It was also found that PM2.5 and PM10 have contributed to about 60% and 36% of the estimated damage cost, respectively. The remaining 4% was attributed to both nitrate and sulfate aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Thoracic Society (1997). Adverse effects of crystalline silica exposure. American Journal of Respiratory and Critical Care Medicine, 155, 761–768.

    Google Scholar 

  • Archer, J. D., Cooper, G. S., Reist, P. C., Storm, J. F., & Nylander-French, L. A. (2002). Exposure to respirable crystalline silica in eastern North Carolina farm workers. American Industrial Hygiene Association Journal, 63, 750–755.

    CAS  Google Scholar 

  • Ares, J. (1994). Long-range long-term transport and decay of PAHs in a Semi-arid coastal area of Argentina. Toxicological and Environmental Chemistry, 41, 109–123.

    CAS  Google Scholar 

  • Aust, A. E., Smith, K. R., & Ball, J. C. (1995). Iron in airborne particulates may be important in lung damage. Particulate Matter: Health and Regulatory Issues. Proceedings of an International Specialty Conference. A&WMA, Pittsburgh, PA, pp. 169–176.

  • Avila, A., Querault-Mitjans, I., & Alarcon, M. (1997). Mineralogical composition of African dust delivered by red rains over northeastern Spain. Journal of Geophysical Research, 102, 21977–21996.

    CAS  Google Scholar 

  • Bach, A. J., Brazel, A. J., & Lancaster, N. (1996). Temporal and spatial aspects of blowing dust in the Mojave and Colorado deserts of southern California, 1973–1994. Physical Geography, 17, 329–353.

    Google Scholar 

  • Behrenfeld, M. J., Bale, A. J., & Kolber, Z. S. (1996). Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 383, 508–511.

    CAS  Google Scholar 

  • Bergametti, G. (1992). Atmospheric cycle of desert dust. Encyclopedia of Earth System Science. San Diego: Academic, pp. 171–182.

  • Bergametti, G., & Dulac, F. (1999). Mineral aerosols: renewed interest for climate forcing and tropospheric chemistry studies. IGAC, 13–17.

  • Blank, M., Leinen, M., & Prospero, J. M. (1985). Major Asian Aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature, 314, 84–86.

    CAS  Google Scholar 

  • Broecker, W. S., & Henderson, G. H. (1998). The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO changes. Paleoceanography, 213, 352–364.

    Google Scholar 

  • Buschiazzo, D. E., Zobeck, T. B., & Aimar, S. B. (1999). Wind erosion in loess soils of the Semiarid Argentinian Pampas. Soil Science, 164, 133–138.

    CAS  Google Scholar 

  • Caquineau, S., Gaudichet, A., Gomes, L., Magonthier, M.-C., & Chatenet, B. (1998). Saharan dust: clay ratio as a relevant tracer to assess the origin of soil-derived aerosols. Geophysical Research Letters, 27, 983–986.

    Google Scholar 

  • Carlson, T. N., & Prospero, J. M. (1972). Large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. Journal of Applied Meteorology, 11, 283–297.

    Google Scholar 

  • Carmichael, G. R., Zhang, Y., Chen, L. L., Hong, M. S., & Ueda, H. (1996). Seasonal variation of aerosol composition at Cheju Island, Korea. Atmospheric Environment, 30, 2407–2416.

    CAS  Google Scholar 

  • Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., & Hedin, L. O. (1999). Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491–497.

    CAS  Google Scholar 

  • Chester, R., Griffiths, A. G., & Hirst, J. M. (1979). The influence of soil-sized atmospheric particulates on the elemental chemistry of the deep-sea sediments of the North Eastern Atlantic. Marine Geology, 32, 141–154.

    CAS  Google Scholar 

  • Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., & Soares, E. S. (1997). Origins of African dust transported over the northeastern tropical Atlantic. Journal of Geophysical Research, 102, 13701–13709.

    CAS  Google Scholar 

  • Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S., Chavez, F. P., et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.

    CAS  Google Scholar 

  • Darwin, C. (1846). An account of the fine dust which often falls on vesels in the Atlantic Ocean. Quarterly Journal of the Geological Society of London, 2, 26–30.

    Google Scholar 

  • de Angelis, M., & Gaudichet, A. (1991). Saharan dust deposition over . Mont Blanc French Alps during the last 30 years. Tellus 43B, 61–75.

  • Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., & Crutzen, P. J. (1996). Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research, 101, 22869–22889.

    CAS  Google Scholar 

  • Dobson, M. (1781). An account of the Harmattan, a singular African wind. Philosophical Transactions-Royal Society of London, 71, 46–57.

    Google Scholar 

  • Duce, R. A. (1986). The impact of atmospheric nitrogen, phosphorus, and iron species on marine productivity. In P. Buat-Menard (Ed.), The role of air–sea exchange in geochemical cycling (pp. 497–529). Norwell, MA: Reidel.

    Google Scholar 

  • Duce, R. A. (1995). Source, distributions, and fluxes of mineral aerosols and their relationship to climates. In R. J. Charlson & J. Heintzenberg (Eds.), Dahlem workshop on aerosol forcing of climate (pp. 43–72). New York: Wiley.

    Google Scholar 

  • Duce, R. A., & Tindale, N. W. (1991). Atmospheric transport of iron and its deposition in the ocean. Limnology and Oceanography, 36, 1715–1726.

    CAS  Google Scholar 

  • Duce, R. A., Unni, C. K., Ray, B. J., Prospero, J. M., & Merrill, J. T. (1980). Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: temporal variability. Science, 209, 1422–1424.

    Google Scholar 

  • ExternE (1995). ExternE: Externalities of energy. ISBN 92-827-5210-0. Vol. 1: Summary (EUR 16520); Vol. 2: Methodology (EUR 16521); Vol. 3: Coal & Lignite (EUR 16522); Vol. 4: Oil & Gas (EUR 16523); Vol. 5: Nuclear (EUR 16524); Vol. 6: Wind & Hydro (EUR 16525). Published by European Commission, Directorate General XII, Science Research and Development Office for Official Publications of the European Communities, L-2920, Luxembourg.

  • Falkowski, P. G., Barber, R. T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.

    CAS  Google Scholar 

  • Gillette, D. A., Stensland, G. J., Williams, A. L., Barnard, W., Gatz, D., Sinclair, P. C., et al. (1992). Emissions of alkaline elements calcium, magnesium, potassium and sodium from open sources in the contiguous United States. Global Biogeochemical Cycles, 6, 437–457.

    CAS  Google Scholar 

  • Goedkoop, M. J. (1995). Eco-indicators 95—Final Report, NOH Report 9523. Pre Consultants, Amersfoort, The Netherlands.

  • Gordian, M. E., Morris, S., O¨zkaynak, H., Xue, J., & Spengler, J. (1995). Particulate air pollution and respiratory disease in Anchorage, Alaska. Particulate Matter: Health and Regulatory Issues. Proceedings of an International Specialty Conference. A&WMA, Pittsburgh, PA, pp. 143–166.

  • Harrison, S. P., Kohfeld, K. E., Roelandt, C., & Claquin, T. (2001). The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews, 54, 43–80.

    CAS  Google Scholar 

  • Heijungs, R. (1997). Identification of key issues for further investigating in improving the reliability of life-cycle assessment. Journal of Cleaner Production, 4(3).

  • Hutchins, D. A., & Bruland, K. W. (1998). Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature, 393, 561–564.

    CAS  Google Scholar 

  • Inoue, K., & Naruse, T. (1991). Accumulation of Asian long-range eolian dust in Japan and Korea from the Late Pleistocene to the Holocene. Catena Supplement, 20, 25–42.

    Google Scholar 

  • International Agency for Research on Cancer (1997). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: silica and some silicates. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  • ISO 14042 (1998). Environmental management–Life cycle assessment–Life cycle impact assessment. Geneva, Switzerland.

  • Iwasaka, Y., Yamato, M., Imasu, R., & Ono, A. (1988). Transport of Asian dust KOSA particles; importance of weak KOSA events on the geochemical cycle of soil particles. Tellus, 40B, 494–503.

    Article  CAS  Google Scholar 

  • Jickells, T. D., Newton, P. P., King, P., Lampitt, R. S., & Boutle, C. (1996). A comparison of sediment trap records of particle fluxes from 19 to 488N in the northeast Atlantic and their relation to surface water productivity. Deep-Sea Research, Part I, 43, 971–986.

    CAS  Google Scholar 

  • Kennedy, D., Montgomery, D., & Quay, B. (1996). Data Quality: Stochastic environmental life cycle assessment modeling. International Journal of Life Cycle Assessment, 1(4), 199–207.

    Article  CAS  Google Scholar 

  • Kiefert, L., McTainsh, G. H., & Nickling, W. G. (1996). Sedimentological characteristic of Saharan and Australian dusts. In S. Guerzoni, & R. Chester (Eds.), The impact of desert dust across the Mediterranean. Dordrecht: Kluwer Academic Publishing.

    Google Scholar 

  • Kolber, Z. S., Barber, R. T., Coale, K. H., Fitzwater, S. E., Greene, R. M., Johnson, K. S., et al. (1994). Iron limitation of phytoplankton photosynthesis in the equatorial Pacific-Ocean. Nature, 371, 145–149.

    CAS  Google Scholar 

  • Kumar, N., Anderson, R. F., Mortlock, R. A., Froelich, P. N., Kubik, P., Dittrich-Hannen, B., et al. (1995). Increased biological productivity and export production in the glacial Southern Ocean. Nature, 378, 675–680.

    CAS  Google Scholar 

  • Lacis, A. A., & Mishenko, M. I. (1995). Climate forcing, climate sensitivity, and climate response: a radiative modeling perspective on atmospheric aerosols. In R. J. Charlson, & J. Heintzenberg (Eds.), Aerosol Forcing of Climate (pp. 11–42). London: Wiley.

    Google Scholar 

  • Lee, J.A., & Tchakerian, V.P. (1995). Magnitude and frequency of blowing dust on the Southern High Plains of the United States, 1947–1989. Annales of Association of American Geography, 85, 684–693.

    Google Scholar 

  • Leinen, M., Prospero, J. M., Arnold, E., & Blank, M. (1994). Mineralogy of aeolian dust reaching the North Pacific Ocean: 1. Sampling and analysis. Journal of Geophysical Research, 99, 21017–21023.

    Google Scholar 

  • Levin, Z., Ganor, E., & Gladstein, V. (1996). The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. Journal of Applied Meteorology, 35, 1511–1523.

    Google Scholar 

  • Liao, H., & Seinfeld, J. H. (1998). Radiative forcing by mineral dust aerosols: sensitivity to key variables. Journal of Geophysical Research, 103, 31637–31645.

    CAS  Google Scholar 

  • Li-Jones, X., & Prospero, J. M. (1998). Variations in the size distribution of non-sea-salt sulfate aerosol in the marine boundary layer at Barbados: impact of African dust. Journal of Geophysical Research, 103, 16073–16084.

    CAS  Google Scholar 

  • Lindfors, L.-G., Christiansen, K., Hoffman, L., Virtanen, Y., Juntilla, V., Leskinen, A., et al. (1995). Impact Assessment. LCA-NORDIC Technical Report No. 10, TemaNord 1995:503, Nordic Council of Ministers, Copenhagen.

    Google Scholar 

  • Lipsett, M., Hurley, S., & Ostro, B. (1995). Winter air pollution and emergency department visits for asthma in the San Francisco Bay Area. Particulate Matter: Health and Regulatory Issues. Proceedings of an International Specialty Conference. A&WMA, Pittsburgh, PA, pp. 105–113.

  • Losno, R., Bergametti, G., Carlier, P., & Mouvier, G. (1991). Major ions in marine rainwater with attention to sources of alkaline and acidic species. Atmospheric Environment: Part A. Geneneral Topics, 25, 763–770.

    Google Scholar 

  • Loye-Pilot, M. D., Martin, M., Morelli, J. (1986). Influence of Saharan dust on the acidity and atmospheric input to the Mediterranean. Nature, 321, 427–428.

    Google Scholar 

  • Mamane, Y., & Gottlieb, J. (1992). Nitrate formation on sea-salt and mineral particles — a single particle approach. Atmospheric Environment, 26A, 1763–1769.

    CAS  Google Scholar 

  • Martin, J. H. (1990). Glacial–interglacial CO change: the iron 2 hypothesis. Palaeoceanography, 5, 1–13.

    Article  Google Scholar 

  • Martin, J. H., Coale, K. H., & Johnson, K. S. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific-Ocean. Nature, 371, 123–129.

    CAS  Google Scholar 

  • Martin, J. H., & Fitzwater, S. E. (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331, 341–343.

    CAS  Google Scholar 

  • Martin, J. H., Fitzwater, S. E., & Gordon, R. M. (1990). Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles, 4, 5–12.

    CAS  Google Scholar 

  • Matsumura, R.T., Ashbaugh, L., James, T., Carvacho, O., & Flocchini, R. (1996). Size distribution of PM10 soil dust emissions fromharvesting crops. Proceedings of the International Conference on Air Pollution from Agricultural Operations, Kansas City, Midwest Plan Service, Aines, IA, pp. 147–154.

  • McTainsh, G. H., & Pitblado, J. R. (1987). Dust storms and related phenomena measured from meteorological records in Australia. Earth Surface Processes Landforms, 12, 415–424.

    Google Scholar 

  • Merrill, J. T., Arnold, E., Leinen, M., & Weaver, C. (1994). Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. Journal of Geophysical Research, 99, 21025–21032.

    Google Scholar 

  • Middleton, N. J. (1984). Dust storms in Australia: frequency, distribution and seasonality. Search, 15, 46–47.

    Google Scholar 

  • Middleton, N. J. (1986a). Dust storms in the Middle East. Journal of Arid Environments, 10, 83–96.

    Google Scholar 

  • Middleton, N. J. (1986b). A geography of dust storms in south-west Asia. Journal of Climatology, 6, 183–196.

    Google Scholar 

  • Middleton, N. J. (1991). Dust storms in the Mongolian People’s Republic. Journal of Arid Environments, 20, 287–297.

    Google Scholar 

  • Middleton, N.J., Goudie, A.S., & Wells, G.L. (1986). The frequency and source areas of dust storms. In W.G. Nickling (Ed.), Aeolian Geomorphology Allen and Unwin, Boston (pp. 237–260).

  • Miller, R. L., & Tegen, I. (1998). Climate response to soil dust aerosols. Journal of Climate, 11, 3247–3267.

    Google Scholar 

  • Muhs, D. R., Bush, C. A., Stewart, K. C., Rowland, T. R., & Crittenden, R. C. (1990). Geochemical evidence of Saharan dust parentmaterial for soils developed on Quaternary limestones of Caribbean and western Atlantic islands. Quaternary Research, 33, 157–177.

    Google Scholar 

  • Muhs, D. R., Crittenden, R. C., Rosholt, J. N., Bush, C. A., & Stewart, K. C. (1987). Genesis of marine terrace soils, Barbados, West Indies: evidence from mineralogy and geochemistry. Earth Surface Processes Landforms, 12, 605–618.

    CAS  Google Scholar 

  • Nieuwenhuijsen, M. J., Noderer, K. S., Schenker, M. B., Vallyathan, V., & Olenchock, S. (1999). Personal exposure to dust, endotoxin, and crystalline silica in California agriculture. Annals of Occupational Hygiene, 43, 35–42.

    CAS  Google Scholar 

  • Oba, T., & Pedersen, T. F. (1999). Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum. Paleoceanography, 14, 34–41.

    Google Scholar 

  • Oltmans, S. J., Levy, H., II (1992). The seasonal cycle of surface ozone over the western North Atlantic. Nature, 358, 11174–11180.

    Google Scholar 

  • Orange, D., & Gac, J.-Y. (1990). Bilan geochimique des apports atmospheriques en domaines sahelien et soudano-guineen d’Afrique de l’Ouest bassins superieurs du Senegal et de la Gambie. Geodynamique, 5, 51–65.

    Google Scholar 

  • Orgill, M. M., & Sehmel, G. A. (1976). Frequency and diurnal variation of dust storms in the contiguous. United States of America Atmospheric Environment, 10, 813–825.

    Google Scholar 

  • Parks, C. G., Conrad, K., & Cooper, G. S. (1999). Occupational exposure to crystalline silica and autoimmune disease. Environmental Health Perspectives, 107(Suppl 5):793–802.

    Google Scholar 

  • Pease, P. P., Tchakerian, V. P., & Tindale, N. W. (1998). Aerosols over he Arabian Sea: geochemistry and source areas for aolian desert dust. Journal of Arid Environments, 39, 477–496.

    Google Scholar 

  • Pope, C. A., & Dockery, D. W. (1998). Epidemiology of particle effects. In S. Lort (Ed.), Air Pollution and Health (pp. 673–705). San Diego, CA: Academic.

    Google Scholar 

  • Pope, C. A., Dockery, D. W., & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution. Inhalation Toxicology, 7, 1–18.

    CAS  Google Scholar 

  • Prentice, I. C., & Sarnthein, M. (1993). Self-regulatory processes in the biosphere in the face of climate change. In J. Eddy, H. Oeschger (Eds.), Global Changes in the Perspective of the Past (pp. 29–38). Wiley.

  • Prospero, J. M. (1981). Eolian transport to the world ocean. In C. Emiliani (Ed.), (pp. 801–874). New York: Wiley.

  • Prospero, J. M., Glaccum, R. A., & Nees, R. T. (1981). Atmospheric transport of soil dust from Africa to South America. Nature, 289, 570–572.

    CAS  Google Scholar 

  • Prospero, J. M., Uematsu, M., Savoie, D. L. (1989). Mineral aerosol transport to the Pacific Ocean. Chemical Oceanography, 10, 188–218.

    Google Scholar 

  • Pye, K. (1987). Aeolian Dust and Dust Deposits. San Diego: Academic, p. 334.

    Google Scholar 

  • Rahn, K. A., Borys, R. D., Shaw, G. E., Schutz, L., & Jaenicke, R. (1979). Long-range impact of desert aerosol on atmospheric chemistry: two examples. In C. Morales (Ed.), Saharan Dust: Mobilization, Transport, and Deposition. SCOPE 14 (pp. 243–266). Chichester: Wiley.

    Google Scholar 

  • Rea, D. (1994). The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Reviews of Geophysics, 32, 159–195.

    Google Scholar 

  • Reheis, M. C., Goodmacher, J. C., Harden, J. W., McFadden, L. D., Rockwell, T. K., Shroba, R. R., et al. (1995). Quaternary soils and dust deposition in southern Nevada and California. GSA Bulletin, 107, 1003–1022.

    Article  CAS  Google Scholar 

  • Sarnthein, M., & Koopman, B. (1980). Late Quaternary deep-sea record of Northwest African dust supply and wind circulation. Palaeoecology Africa, 12, 239–253.

    Google Scholar 

  • Savoie, D. L., & Prospero, J. M. (1989). Comparison of oceanic and continental sources of non-sea-salt sulfate over the Pacific Ocean. Nature, 339, 685–687.

    CAS  Google Scholar 

  • Schenker M. (2000). Exposures and health effects from inorganic agricultural dusts. Environmental Health Perspectives, 108(Suppl 4), 661–664.

    CAS  Google Scholar 

  • Schlesinger, W. H. (1982). Carbon storage in the caliche of arid soils: a case study from Arizona. Soil Science, 133, 247–255.

    CAS  Google Scholar 

  • Shao, Y., & Leslie, L. M. (1997). Wind erosion prediction over the Australian continent. Journal of Geophysical Research, 102, 30091–30105.

    Google Scholar 

  • Sheehy, D. P. (1992). A perspective on desertification of grazing land ecosystems in North China. Ambio, 21, 303–307.

    Google Scholar 

  • Shine, K. P., & Forster, P. M. D. (1999). The effect of human activity on radiative forcing of climate change: a review of recent developments. Global Planetary Change, 20, 205–225.

    Google Scholar 

  • Simonson, R. W. (1995). Airborne dust and its significance to soils. Geoderma, 65, 1–43.

    Google Scholar 

  • Sokolik, I. N., & Toon, O. B. (1996). Direct radiative forcing by anthropogenic airborn mineral aerosols. Nature, 381, 681–683.

    CAS  Google Scholar 

  • Sokolik, I. N., & Toon, O. B. (1999). Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research, 104, 9423–9444.

    CAS  Google Scholar 

  • Steen, B. (1999a). A systematic approach to environmental priority strategies in product development (EPS); version 2000 — general system characteristics. CPM Report 1999:4. Göteborg, Sweden: Chalmers University of Technology.

    Google Scholar 

  • Steen, B. (1999b). A systematic approach to environmental priority strategies in product development (EPS); version 2000 — models and data of the default method. CPM Report 1999:5. Göteborg, Sweden: Chalmers University of Technology.

    Google Scholar 

  • Stopford, C. M., & Stopford, W. (1995). Respirable quartz content of farm soils. Applied Occupational and Environmental Hygiene, 10, 196–199.

    CAS  Google Scholar 

  • Sunda, W. G., & Huntsman, S. A. (1997). Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, 390, 389–392.

    CAS  Google Scholar 

  • Swap, R., Garstang, M., Greco, S., Talbot, R., & Kallberg, P. (1992). Saharan dust in the Amazon Basin. Tellus, 44B, 133–149.

    CAS  Google Scholar 

  • Tabazadeh, A., Jacobson, M. Z., Singh, H. B., Toon, O. B., Lin, J. S., Chatfield, R. B., et al. (1998). Nitric acid scavenging by mineral and biomass burning aerosols. Geophysical Research Letters, 25, 4185–4188.

    CAS  Google Scholar 

  • Tegen, I., & Fung, I. (1995). Contribution to the atmospheric mineral aerosol load from land surface modification. Journal of Geophysical Research, 100, 18707–18726.

    Google Scholar 

  • Tegen, I., & Lacis, A. A. (1996). Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. Journal of Geophysical Research, 101, 19337–19342.

    Google Scholar 

  • Tegen, I., Lacis, A. A., & Fung, I. (1996). The influence of climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422.

    CAS  Google Scholar 

  • Tiessen, H., Hauffe, H.-K., & Mermut, A. R. (1991). Deposition of Harmattan dust and its influence on base saturation of soils in northern Ghana. Geoderma, 49, 285–299.

    CAS  Google Scholar 

  • Tiller, K. G., Smith, L. H., & Merry, R. H. (1987). Accessions of atmospheric dust east of Adelaide, South Australia, and the implications for pedogenesis. Australian Journal of Soil Research, 25, 43–54.

    Google Scholar 

  • U.S. EPA (1995). AP-42, Compilation of air pollutant emission factors. Washington, DC, vol. I. 5th ed.

  • U.S. EPA (1996). Air quality criteria for particulate matter. Research Triangle Park, NC: Office of Research and Development, EPA/600/P-95/001aF.

    Google Scholar 

  • Varma, G. S. (1989). Impact of soil-derived aerosols on precipitation acidity in India. Atmospheric Environment, 23, 2723–2728.

    CAS  Google Scholar 

  • Waggoner, A. P., Weiss, R. E., Ahlquist, N. C., Covert, D. S., Will, S., & Charlson, R. J. (1981). Optical characteristics of atmospheric aerosols. Atmospheric Environment, 15, 1891–1909.

    CAS  Google Scholar 

  • Watson, A. J. (1996). Volcanic iron, CO, ocean productivity and climate. Nature, 385, 587–588.

    Google Scholar 

  • WHO (1987). Air quality guidelines for Europe. European Series No. 23. WHO Regional Publications, Copenhagen.

    Google Scholar 

  • Wilson, R., & Spengler, J. (1996). Particles in our air: concentration and health effects. Harvard University Press, Harvard School of Public Health.

  • Wu, P. M., & Okada, K. (1994). Nature of coarse nitrate particles in the atmosphere — single particle approach. Atmospheric Environment, 28, 2053–2060.

    CAS  Google Scholar 

  • Zhang, D. (1982). Analysis of dust rain in the historical times of China. Kexue Tongbao, 27, 294–297.

    Google Scholar 

  • Zhang, D. (1983). Analysis of dust rain in the historic times of China. Kexue Tongbao Foreign Language in Education, 28, 361–366.

    Google Scholar 

  • Zhang, D. (1984). Synoptic-climatic studies of dust fall in China since historic times. Scientia Sinica, B English Edition, 27, 825–836.

    Google Scholar 

  • Zhang, Y., & Carmichael, G. R. (1999). The role of mineral aerosol in tropospheric chemistry in East Asia—a model study. Journal of Applied Meteorology, 38, 353–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Mohsen Onsy Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, AM.O., El Bassouni, K.M. Externalities of Fugitive Dust. Environ Monit Assess 130, 83–98 (2007). https://doi.org/10.1007/s10661-006-9452-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9452-x

Keywords

Navigation