Skip to main content

Advertisement

Log in

Spatial Distribution of Forest Fires and Controlling Factors in Andhra Pradesh, India Using Spot Satellite Datasets

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fires are one of the major causes of forest disturbance and destruction in several dry deciduous forests of southern India. In this study, we use remote sensing data sets in conjunction with topographic, vegetation, climate and socioeconomic factors for determining the potential causes of forest fires in Andhra Pradesh, India. Spatial patterns in fire characteristics were analyzed using SPOT satellite remote sensing datasets. We then used nineteen different metrics in concurrence with fire count datasets in a robust statistical framework to arrive at a predictive model that best explained the variation in fire counts across diverse geographical and climatic gradients. Results suggested that, of all the states in India, fires in Andhra Pradesh constituted nearly 13.53% of total fires. District wise estimates of fire counts for Andhra Pradesh suggested that, Adilabad, Cuddapah, Kurnool, Prakasham and Mehbubnagar had relatively highest number of fires compared to others. Results from statistical analysis suggested that of the nineteen parameters, population density, demand of metabolic energy (DME), compound topographic index, slope, aspect, average temperature of the warmest quarter (ATWQ) along with literacy rate explained 61.1% of total variation in fire datasets. Among these, DME and literacy rate were found to be negative predictors of forest fires. In overall, this study represents the first statewide effort that evaluated the causative factors of fire at district level using biophysical and socioeconomic datasets. Results from this study identify important biophysical and socioeconomic factors for assessing ‘forest fire danger’ in the study area. Our results also identify potential ‘hotspots’ of fire risk, where fire protection measures can be taken in advance. Further this study also demonstrate the usefulness of best-subset regression approach integrated with GIS, as an effective method to assess ‘where and when’ forest fires will most likely occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anselin, L., Florax, R. and Rey, S. (eds.): 2004, Advances in Spatial Econometrics. Methodology, Tools and Applications, Berlin, Springer-Verlag.

    Google Scholar 

  • Albini, F. A.: 1976, ‘Estimating wildfire behavior and effects’, Gen.Tech.Rep.INT.30. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 92p.

    Google Scholar 

  • Anderson, H. E.: 1982, ‘Aids to determining fuel models for estimating fire behavior. USDA Forest Service’, Intermountain Forest and Range Experiment Station General Technical Report INT-122. Ogden, UT. 22 pp.

  • Bhatt, B. P. and Todaria, N. P.: 1992, ‘Fuel wood characteristics of some Indian mountain species’, Forest Ecology and Management 47, 363–366.

    Article  Google Scholar 

  • Brivio, P. A., Maggi, M., Binaghi, E. and Gallo, I.: 2003, ‘Mapping burned surfaces in sub-saharan Africa based on multi-temporal neural classification’, International Journal of Remote Sensing 24(20), 2003–4018.

    Google Scholar 

  • Browder, J. O. and Godfrey, B. J.: 1997, Rainforest Cities: Urbanization, Development and Globalization of the Brazilian Amazon. Columbia University Press, New York.

    Google Scholar 

  • Campbell, G. S., Jungbauer, J. D., Jr., Bristow, K. L. and Hungerford, R. D.: 1995, ‘Soil temperature and water content beneath a surface fire’, Soil Science 159, 363–374.

    Article  CAS  Google Scholar 

  • Campbell, S., Liegel, L. (tech. cords).: 1996. ‘Disturbance and forest health in Oregon and Washington’. General Technical Report PNW-GTR-381, Portland, OR: USDA Forest Service, 105p.

  • Catchpole, E. A., Hatton, T. J. and Catchpole, W. R.: 1989, ‘Fire spread through non-homogenous fuel modeled as markov process’, Ecological Modeling 48, 101–112.

    Article  CAS  Google Scholar 

  • Chandler, C., Cheney, P., Thomas, P., Trabaud, L. and Williams, D.: 1983, ‘Fire effects on soil, water and air, Fire in Forestry. Vol. I. Forest Fire Behavior and Effects’, 450 pp, John Wiley & Sons, New York.

    Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. M. and Cess, R. D.: 1992. ‘Climate forcing by anthropogenic aerosols’, Science 255, 423–430.

    Article  CAS  Google Scholar 

  • Chou, Y. H., Minnich, R. A. and Chase, R. A.: 1993, ‘Mapping probability of fire occurrence in San Jacinto Mountains, California, USA’, Environmental Management 17, 129–140.

    Article  Google Scholar 

  • Cochrane, M. A. and Schulze, M. D.: 1998, ‘Forest fire in the Brazilian Amazon’, Conservation Biology 12, 948–950.

    Google Scholar 

  • Crutzen, P. J. and Andreae, M. O.: 1990, ‘Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles’, Science 250, 1669–1678.

    Article  CAS  Google Scholar 

  • Dansereau, P. R. and Bergeron, Y.: 1993, ‘Fire history in the southern boreal forest of Quebec’, Canadian Journal of Forest Research 23, 25–32.

    Google Scholar 

  • DeBano, L. F., Neary, D. G. and Ffolliott, P. F.: 1998, Fire's Effects on Ecosystems. New York: John Wiley and Sons, Inc., 333p.

    Google Scholar 

  • Ehrilich, D., Lambin, E. and Malingreau, J.-P.: 1997, ‘Biomass burning and broad-scale land cover changes in western Africa’, Remote Sensing of Environment 61, 201–209.

    Article  Google Scholar 

  • Eva, H. and Lambin, E. F.: 2000, ‘Fires and land cover change in the tropics. A remote sensing analysis at the landscape scale’, Journal of Biogeography 27, 765–776.

    Article  Google Scholar 

  • Fotheringham, S., Brunsdon, C. and Charlton, M.: E 1998, ‘Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis’, Environment and Planning A 30, 1905–1927.

    Article  Google Scholar 

  • Fraser, R. H., Li, Z. and Cihlar, J.: 2000, ‘Hotspot and NDVI differencing synergy (HANDS): A new technique burned area mapping over boreal forest’, Remote Sensing of Environment 74, 362–376.

    Article  Google Scholar 

  • Fried, J. S. and Gilles, J. K.: 1988, ‘Stochastic representation of fire occurrence in a wildland fire protection planning model for California’, Forest Science 34(4), 948–959.

    Google Scholar 

  • Gaimpietro, M.: 1997, ‘Linking technology, natural resources, and the socioeconomic structure of human society: a theoretical model’ In Advances in Human Ecology, vol. 6, Freese, L., Ed., JAI Press, Greenwich, CT, pp. 75–130.

  • Gardner, R. H., Milne, B. T., Turner, M. G. and O'Neill, R. V.: 1987, ‘Neutral models for the analysis of broad-scale landscape pattern’, Landscape Ecology 1, 19–28.

    Article  Google Scholar 

  • Gillingham, S. and Lee, P. C.: 1999, ‘The impact of wildlife-related benefits on the conservation attitudes of local people around the Selous Game Reserve, Tanzania’, Environmental Conservation 26(3), 218–228.

    Article  Google Scholar 

  • Goldammer, J. G. and Price, C.: 1998, ‘Potential impacts of climate change on fire regimes in the tropics based on MAGICC and GISS GCM-derived lightning model’, Climate Change 39, 273–296.

    Article  Google Scholar 

  • Graetz, D., Maggi, M., Peduzzi, P., Pereira, J., Silva, J., Sousa, A. and Stroppiana, D.: 2004, ‘A global inventory of burned areas at 1Km resolution for the year 2000 derived from SPOT vegetation data’, Climatic Change 67, 345–377.

    Article  Google Scholar 

  • Gray, Gerald, J., Enzer, Maia, J. and Kusek, Jonathan (eds.): 2001, Understanding community-based forest ecosystem management. Binghamton, New York: Haworth Press, Inc. (Food Products Press).

    Google Scholar 

  • Gregoire, J. M., Tansey, K. and Silva, J. M. N.: 2003, ‘The GBA, 2000 initiative: developing a global burned area database from SPOT-Vegetation imagery’, International Journal of Remote Sensing 24, 1369–1376.

    Article  Google Scholar 

  • Hamilton, M. P., Salazar, L. A. and Palmer, K. E.: 1989, ‘Geographic information systems: providing information for wild land fire planning’, Fire Technology 25, 5–23.

    Article  Google Scholar 

  • Hungerford, R. D.: 1989, Modeling the downward heat pulse from fire in soils and in plant tissue. Pp. 148–154 in Proceedings of the 10th Conference on Fire and Forest Meteorology, Ottowa, Canada.

  • IFFN.: 2002, Fire Situation in India. 26th January 2002, p. 23–27.

  • Iles, T.: 1999, Multiple Regression. In. Biological Data Analysis. A Practical Approach. Edited by John C.Fry. IRL Press, at Oxford University Press. Oxford New York Tokyo.

    Google Scholar 

  • Jain, R. K.: 1992, ‘Fuel wood characteristics of Certain Hardwood and Softwood Tree species of India’, Bioresource Technology 41, 129–133.

    Article  CAS  Google Scholar 

  • Jenness, Jeff: 2005, Grid and Theme Regression 3.1a (grid_regression.avx) extension for ArcView 3.x. Jenness Enterprises. Available at: http://www.jennessent.com/arcview/regression.htm.

  • Kemp, E. M.: 1981, Pre-quaternary fire in Australia. In Gill, A. M., Groves, R. H., and Noble, I. R. editors. Fires and the Australian biota, Canberra, Australian Academy of Science, 3–21.

    Google Scholar 

  • Krishna Prasad, V., Badarinath, K.V.S., and Gupta, P.K.: 2002, ‘Biomass burning emission inventory from remote sensing, GIS and ground based measurements - A case study from secondary mixed deciduous forests, India’, Geocarto International, 17 (2)11–18.

    Google Scholar 

  • Kushla, J. D. and Ripple, W.: 1997, ‘The role of terrain in fire mosaic of a temperate coniferous forest’, Forest Ecology and Management 95, 87–107.

    Article  Google Scholar 

  • Leblon, B., Kasischke, E., Alexander, M., Doyle, M. and Abbott, M.: 2002, ‘Fire danger monitoring using ERS-1 SAR images in the case of northern boreal forests’, Natural Hazards 27, 231–255.

    Article  Google Scholar 

  • Maggi, M. and Stroppiana, D.: 2002, ‘Advantages and drawbacks of NOAA-AVHRR and SPOT-Vegetation for burnt area mapping in a tropical savanna ecosystem’, Canadian Journal of Remote Sensing 28, 231–245.

    Google Scholar 

  • Malamud, B. D., Morein, G. and Turcotte, D. L.: 1998, ‘Forest fires: An example of self-organized critical behavior’, Science 281, 1840–1842.

    Article  CAS  Google Scholar 

  • Martell, D. L., Otukol, S. and Stocks, B. J.: 1987, ‘A logistic model for predicting daily people-caused forest fire occurrence in Ontario’, Can. J. For. Res. 17, 394–401.

    Google Scholar 

  • Massman, W. J., Frank, J. M., Shepperd, W. D. and Platten, M. J.: 2002, In situ soil temperature and heat flux measurements during controlled surface burns at a southern Colorado forest site.

  • Mordi, R.: 1987, Public attitudes toward wildlife in Botswana. Ph.D Thesis, Yale University, New Haven, connnecticut, USA. xiv +344 pp.

  • Nepstead, D. C., Verssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutin-ho, P., Mendoza, E., Cochrane, M. and Brooks,V.: 1999, ‘Large-scale impoverishment of Amazonian forests by logging and fires’ Nature 398, 505–508.

  • Perry, D. A.: 1998, ‘The scientific basis of forestry’. Annual Review of Ecology and Systematics 29, 435–66.

    Google Scholar 

  • Pew, K. L. and Larsen, C. P. S.: 2001, ‘GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada’, Forest Ecology and Management 140, 1–18.

    Article  Google Scholar 

  • Price, D. T., McKenney D. W., Nalder I. A., Hutchinson M. F., Kesteven, J. T.: 2000, “A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data”, Agricultural and Forest Meteorology 101, 81–94.

    Google Scholar 

  • Pyne, S. J.: 1982, Fire in America. A cultural history of wild land and fural fire. Princeton University Press, Princeton, NJ, 654 pp.

    Google Scholar 

  • Pyne, S. J., Andrews, P. L. and Laven, R. D.: 1996, Introduction to Wild land Fire. 2nd edn., Wiley, New York. 769 pp.

    Google Scholar 

  • Roberts, S. J.: 2000, ‘Tropical fire ecology’, Progress in Physical Geography 24, 281–288.

  • Rothermel, R. C.: 1991, Predicting behavior and size of crown fires in the Northern Rocky Mountains. Gen Tech.Rep.INT-438. Ogden, UT: US. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 46p.

    Google Scholar 

  • Sah, J. P. and Heinen, J. T.: 2001, ‘Wetland resource use and conservation attitudes among indigenous and migrant peoples in Ghodaghodi Lake area, Nepal’, Environmental Conservation 28(4), 345–356.

    Article  Google Scholar 

  • Salas, F. J. and Chuvieco, E.: 1994, ‘Geographic Information System for wild land fire risk mapping’, Wildfire 3(2), 7–13.

    Google Scholar 

  • Setiawan, I., Mahmud, A. R., Mansor, S., Mohamed., S. and Nuruddin, A. A.: 2004, ‘GIS grid-based and multi-criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang, Malaysia’, Disaster Prevention and Management 13(5), 379–386.

    Article  Google Scholar 

  • Stole, F. and Lambin, E.F.: 2003, ‘Interprovincial and inter annual differences in causes of land-use fires in Sumatra, Indonesia’, Environmental Conservation 30(4), 375–387.

    Article  Google Scholar 

  • Stroppiana, D. and Grégoire, J.-M.: 2002, ‘Using temporal change of the land cover spectral signal to improve burnt area mapping’, In: Analysis of Multi-temporal Remote Sensing Images, in: Bruzzone, L. and Smith P. (ed.) World Scientific, Singapore, pp. 209–216.

    Google Scholar 

  • Tansey, K.: 2002, ‘Implementation of regional burnt area algorithms for the GBA2000 initiative’. Publication of the European Commission, EUR 20532 EN, 2002.

  • Tansey, K., Gregoire, J. M., Binaghi, E., Boschetti, L., Brivio, P. A., Ershov, D., Flasse, S., Fraser, R., Graetz, D., Maggi, M., Peduzzi, P., Pereira, J., Silva, J., Sousa, A. and Stroppiana, D.: 2004, ‘A global inventory of burned areas at 1km resolution for the year 2000 derived from SPOT vegetation data’, Climatic Change 67(2–3), 345–377.

    Article  CAS  Google Scholar 

  • Turner, M.G.: 1989. ‘Landscape ecology: The effect of pattern on process’, Annual Review of Ecology and Systematics 20, 171–197.

    Article  Google Scholar 

  • Vander Werf, G. R., Randerson, J. T., Collatz, G. J. and Giglio, L.: 2003, ‘Carbon emissions from fires in tropical and sub-tropical ecosystems’, Global Change Biology 9, 547–567.

    Article  Google Scholar 

  • Vazquez, A. and Moreno, J. M.: 2001, ‘Spatial distribution of forest fires in Sierra de Gredos (Central Spain’, Forest Ecology and Management 147, 55–65.

    Article  Google Scholar 

  • Vega-Garcia, C., Woodard, P. M., Titus, S. J., Adamowicz, W. L. and Lee, B. S.: 1995, ‘A logit model for predicting the daily occurrence of human-caused forest fires’, International Journal of Wildland Fire 5, 101–111.

    Article  Google Scholar 

  • Weber, R. O.: 1991, ‘Toward a comprehensive wildfire spread model’, International Journal of Wildland Fire 4, 245–248.

    Google Scholar 

  • Willmott, C. J. and Feddema, J. J.: 1992, ‘A more rational climatic moisture index’, Professional Geographer 44, 84–87.

    Article  Google Scholar 

  • Wilson, J. P. and Gallant, J. C.: 2000, ‘Digital terrain analysis’, In:Wilson, J. P. and Gallant J. C. (eds) Terrain Analysis: Principles and Applications. New York, John Wiley and Sons: 1–28.

  • Wybo, J. L., Guarnieri, F. and Richard, B.: 1995, ‘Forest fire danger assessment methods and decision support’, Safety Science 20, 61–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna P Vadrevu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadrevu, K.P., Eaturu, A. & Badarinath, K.V.S. Spatial Distribution of Forest Fires and Controlling Factors in Andhra Pradesh, India Using Spot Satellite Datasets. Environ Monit Assess 123, 75–96 (2006). https://doi.org/10.1007/s10661-005-9122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-9122-4

Keywords

Navigation