Skip to main content
Log in

Solid Tumors Are Poroelastic Solids with a Chemo-mechanical Feedback on Growth

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the “constitutive equations”) of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the “growth law”) that relates stress and mitotic–apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Folkman, J., Hochberg, M.: Self-regulation of growth in three dimensions. J. Exp. Med. 138(4), 745–753 (1973)

    Article  Google Scholar 

  2. Ambrosi, D., Mollica, F.: The role of stress in the growth of a multicell spheroid. J. Math. Biol. 48(5), 477–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Greenspan, H.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51(4), 317–340 (1972)

    Article  MATH  Google Scholar 

  4. Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., Jain, R.K.: Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15(8), 778–783 (1997)

    Article  Google Scholar 

  5. Montel, F., Delarue, M., Elgeti, J., Vignjevic, D., Cappello, G., Prost, J.: Isotropic stress reduces cell proliferation in tumor spheroids. New J. Phys. 14(5), 055008 (2012)

    Article  ADS  Google Scholar 

  6. Forgacs, G., Foty, R.A., Shafrir, Y., Steinberg, M.S.: Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74(5), 2227–2234 (1998)

    Article  ADS  Google Scholar 

  7. Kuznetsova, T.G., Starodubtseva, M.N., Yegorenkov, N.I., Chizhik, S.A., Zhdanov, R.I.: Atomic force microscopy probing of cell elasticity. Micron 38(8), 824–833 (2007)

    Article  Google Scholar 

  8. Cheng, G., Tse, J., Jain, R.K., Munn, L.L.: Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE 4(2), e4632 (2009)

    Article  ADS  Google Scholar 

  9. Netti, P.A., Berk, D.A., Swartz, M.A., Grodzinsky, A.J., Jain, R.K.: Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60(9), 2497–2503 (2000)

    Google Scholar 

  10. Stylianopoulos, T., Martin, J.D., Chauhan, V.P., Jain, S.R., Diop-Frimpong, B., Bardeesy, N., Smith, B.L., Ferrone, C.R., Hornicek, F.J., Boucher, Y., et al.: Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. 109(38), 15101–15108 (2012)

    Article  ADS  Google Scholar 

  11. Ambrosi, D., Mollica, F.: On the mechanics of a growing tumor. Int. J. Eng. Sci. 40(12), 1297–1316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Montel, F., Delarue, M., Elgeti, J., Malaquin, L., Basan, M., Risler, T., Cabane, B., Vignjevic, D., Prost, J., Cappello, G., et al.: Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107(18), 188102 (2011)

    Article  ADS  Google Scholar 

  13. Monnier, S., Delarue, M., Brunel, B., Dolega, M.E., Delon, A., Cappello, G.: Effect of an osmotic stress on multicellular aggregates. Methods 94, 114–119 (2016)

    Article  Google Scholar 

  14. Byrne, H., Preziosi, L.: Modelling solid tumor growth using the theory of mixtures. Math. Med. Biol. 20(4), 341–366 (2003)

    Article  MATH  Google Scholar 

  15. Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Models Methods Appl. Sci. 12(05), 737–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Roose, T., Netti, P.A., Munn, L.L., Boucher, Y., Jain, R.K.: Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc. Res. 66(3), 204–212 (2003)

    Article  Google Scholar 

  17. Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids 12(3), 319–342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chanet, S., Martin, A.C.: Mechanical force sensing in tissues. Prog. Mol. Biol. Transl. Sci. 126, 317 (2014)

    Article  Google Scholar 

  19. Ciarletta, P.: Buckling instability in growing tumor spheroids. Phys. Rev. Lett. 110(15), 158102 (2013)

    Article  ADS  Google Scholar 

  20. Destrade, M., Murphy, J.G., Ogden, R.W.: On deforming a sector of a circular cylindrical tube into an intact tube: existence, uniqueness, and stability. Int. J. Eng. Sci. 48(11), 1212–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100) (2015)

  22. Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Engng. 79, 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., et al.: PETSc users manual. Technical Report ANL-95/11—Revision 3.6. Argonne National Laboratory (2015)

  24. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mascheroni, P., Stigliano, C., Carfagna, M., Boso, D.P., Preziosi, L., Decuzzi, P., Schrefler, B.A.: Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model. Biomech. Model. Mechanobiol. 15(5), 1215–1228 (2016)

    Article  Google Scholar 

  26. Ambrosi, D., Preziosi, L.: Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model. Mechanobiol. 8(5), 397–413 (2009)

    Article  Google Scholar 

  27. Dorie, M.J., Kallman, R.F., Rapacchietta, D.F., Van Antwerp, D., Huang, Y.R.: Migration and internalization of cells and polystyrene microspheres in tumor cell spheroids. Exp. Cell Res. 141(1), 201–209 (1982)

    Article  Google Scholar 

  28. Delarue, M., Montel, F., Caen, O., Elgeti, J., Siaugue, J.M., Vignjevic, D., Prost, J., Joanny, J.F., Cappello, G.: Mechanical control of cell flow in multicellular spheroids. Phys. Rev. Lett. 110(13), 138103 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work has been partially supported by the My First AIRC Grant—MFAG 2015—code 17412 titled “A Mathematical insights of glioblastoma growth: a mechano-biology approach for patient-specific clinical tools” and by “Progetto Giovani GNFM 2016” funded by the National Group of Mathematical Physics (GNFM—INdAM). TS is supported by European Research Council (ERC-2013-StG-336839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ambrosi.

Appendix: Stability of the Homogeneous Solution

Appendix: Stability of the Homogeneous Solution

The integration of the “stress-modulated growth” illustrated in the previous section predicts a spatially homogeneous solution, parametrically depending on the time-dependent growth rate. The growth \(g(R;t)\) is independent of the radial position because the stress is the same everywhere. In such a purely mechanical setting we now study the stability of the homogeneous solution (20) and (25). In other words, the question is whether the spatial inhomogeneity observed in grown spheroids could be produced by the mechanobiological feedback, thus amplifying the spatial perturbations of the stress to yield inhomogeneous growth.

To investigate this hypothesis we consider the following perturbation of the homogeneous solution:

$$\begin{aligned} r(R,t) &= \gamma g_{0}(t) R + \rho (R,t), \quad \gamma g_{0}(t) R \gg \rho (R,t), \end{aligned}$$
(32)
$$\begin{aligned} g(R,t) &= g_{0}(t) + \delta (R,t), \quad g_{0}(t) \gg \delta (R,t), \end{aligned}$$
(33)

where \(\gamma \) and \(g_{0}(t)\) are solutions of Eqs. (21) and (24), respectively, and \(g_{0}(0) = 1\).

When the perturbed solutions are plugged in Eqs. (21) and (24) and only first order terms are retained, the following linear equations are found

$$\begin{aligned} \biggl( \rho ' + 2 \frac{\rho }{R} \biggr) ' &= \gamma \frac{3 - \gamma^{2}}{\gamma^{2} + 1} \delta ', \end{aligned}$$
(34)
$$\begin{aligned} \dot{\delta} &= \biggl( 1 + 2 \frac{g_{0}}{\kappa } -2 \frac{g_{0}}{ \alpha } -4 \frac{g_{0}}{\kappa \gamma^{2}} \biggr) \frac{\delta }{ \tau } + \frac{2}{3} \frac{g_{0}}{\kappa \tau \gamma^{3}} \biggl( \rho ' + 2 \frac{\rho }{R} \biggr) . \end{aligned}$$
(35)

Derivation of the former equation in space, derivation of the latter in time and cross substitution yields

$$\begin{aligned} \dot{\delta }' = \biggl( 1 + 2 \frac{g_{0}}{\kappa } -2 \frac{g_{0}}{ \alpha } - 4 \frac{g_{0}}{\kappa \gamma^{2}} + \frac{2}{3} \frac{g _{0}}{\kappa \gamma^{2}} \frac{3 - \gamma^{2}}{\gamma^{2}+1} \biggr) \frac{ \delta '}{\tau }, \end{aligned}$$
(36)

which determines the evolution in time of the spatial perturbation in the growth \(g(t)\). Instability shows up if

$$\begin{aligned} \alpha \kappa \gamma^{2} \bigl(\gamma^{2}+1 \bigr) > 2 g_{0} \biggl( \alpha \biggl( 1 + \frac{4}{3} \gamma^{2} - \gamma^{4} \biggr) + \kappa \gamma^{2} \bigl( \gamma^{2} + 1 \bigr) \biggr) , \end{aligned}$$
(37)

for some \(1< g_{0}(t)< g_{e}\), where \(0 <\gamma (p_{D})<1\).

The result (37) is negative versus our conjecture: it predicts a stabilization of the system for large enough growth \(g_{0}\) which is not in agreement with experiments. If the purely mechanical system is stable, the reported inhomogeneity (large proliferation near the boundary, smaller internally) should instead be explained accounting for the role of nutrients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosi, D., Pezzuto, S., Riccobelli, D. et al. Solid Tumors Are Poroelastic Solids with a Chemo-mechanical Feedback on Growth. J Elast 129, 107–124 (2017). https://doi.org/10.1007/s10659-016-9619-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9619-9

Keywords

Mathematics Subject Classification

Navigation