Skip to main content
Log in

On the Inverse Elastic Scattering by Interfaces Using One Type of Scattered Waves

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We deal with the problem of the linearized and isotropic elastic inverse scattering by interfaces. We prove that the scattered p-parts or s-parts of the far field pattern, corresponding to all the incident plane waves of pressure or shear types, uniquely determine the obstacle geometry for both the penetrable and impenetrable obstacles. In addition, we state a reconstruction procedure. In the analysis, we assume only the Lipschitz regularity of the interfaces and, for the penetrable case, the Lamé coefficients to be measurable and bounded, inside the obstacles, with the usual jumps across these interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The reason why we sum up is explained in the proof of Lemma 2 and the comment in footnote 2.

  2. We need to sum up all the terms to derive the lower bound in terms of |xy| only.

References

  1. Alves, C.J.S., Kress, R.: On the far-field operator in elastic obstacle scattering. IMA J. Appl. Math. 67(1), 1–21 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Arens, T.: Linear sampling methods for 2D inverse elastic wave scattering. Inverse Probl. 17(5), 1445–1464 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Charalambopoulos, A.: On the interior transmission problem in nondissipative, inhomogeneous, anisotropic elasticity. J. Elast. 67(2), 149–170 (2003)

    Article  MathSciNet  Google Scholar 

  4. Charalambopoulos, A., Gintides, D., Kiriaki, K.: The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Probl. 18(3), 547–558 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Charalambopoulos, A., Gintides, D., Kiriaki, K.: The linear sampling method for non-absorbing penetrable elastic bodies. Inverse Probl. 19(3), 549–561 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Colton, D., Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Appl. Sci. 24(16), 1289–1303 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dahlberg, B.E.J., Kenig, C.E.: L p estimates for the three-dimensional systems of elastostatics on Lipschitz domains. In: Analysis and Partial Differential Equations. Lecture Notes in Pure and Appl. Math., vol. 122, pp. 621–634. Dekker, New York (1990)

    Google Scholar 

  8. Gintides, D., Kiriaki, K.: The far-field equations in linear elasticity—an inversion scheme. Z. Angew. Math. Mech. 81(5), 305–316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gintides, D., Sini, M.: Identification of obstacles using only the scattered P-waves or the scattered S-waves. Inverse Probl. Imaging 6(1), 39–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hähner, P., Hsiao, G.C.: Uniqueness theorems in inverse obstacle scattering of elastic waves. Inverse Probl. 9(5), 525–534 (1993)

    Article  ADS  MATH  Google Scholar 

  11. Hu, G., Kirsch, A., Sini, M.: Some inverse problems arising from elastic scattering by rigid obstacles. Inverse Probl. 29(1), 015009 (2013), 21 pp.

    Article  ADS  MathSciNet  Google Scholar 

  12. Ikehata, M.: Reconstruction of the shape of the inclusion by boundary measurements. Commun. Partial Differ. Equ. 23(7–8), 1459–1474 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kar, M., Sini, M.: Reconstruction of interfaces from the elastic farfield measurements using CGO solutions. arXiv:1311.4137

  14. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965). Translated from the Russian by H. Gutfreund. Translation edited by I. Meroz

    MATH  Google Scholar 

  15. Kupradze, V.D., Gegelia, T.G., Basheleĭshvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Series in Applied Mathematics and Mechanics, vol. 25. North-Holland, Amsterdam (1979). Edited by V. D. Kupradze, russian edition.

    MATH  Google Scholar 

  16. Mayboroda, S., Mitrea, M.: The Poisson problem for the Lamé system on low-dimensional Lipschitz domains. In: Integral Methods in Science and Engineering, pp. 137–160. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  17. Potthast, R.: Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall/CRC Research Notes in Mathematics, vol. 427. Chapman & Hall/CRC, Boca Raton (2001)

    MATH  Google Scholar 

  18. Potthast, R.: A survey on sampling and probe methods for inverse problems. Inverse Probl. 22(2), R1–R47 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Kar.

Additional information

M. Kar supported by the Austrian Science Fund (FWF): P22341-N18. M. Sini partially supported by the Austrian Science Fund (FWF): P22341-N18.

Appendix

Appendix

1.1 A.1 Derivatives of the Helmholtz Fundamental Solution

We have, for \(x,y\in\mathbb{R}^{3}\) with xy

$$G_p(x,y) = \frac{e^{i\kappa_p|x-y|}}{4\pi|x-y|}. $$

1st Order Partial Derivatives

The first partial derivatives of G p can be written as:

$$\frac{\partial G_p(x,y)}{\partial x_l} = \frac{1}{4\pi}e^{i\kappa _p|x-y|} \biggl[ \frac{i\kappa_p(x_l-y_l)}{|x-y|^2}-\frac {(x_l-y_l)}{|x-y|^3} \biggr], $$

for all l=1,2,3.

2nd Order Partial Derivatives

For all l=1,2,3

$$\begin{aligned} \frac{\partial^2G_p}{\partial x_{l}^{2}} =& \frac{1}{4\pi}e^{i\kappa_p|x-y|} \biggl[(i \kappa_p)^2\frac {(x_l-y_l)^2}{|x-y|^3}-3i\kappa_p \frac{(x_l-y_l)^2}{|x-y|^4} \\ &{}+\frac{i\kappa_p}{|x-y|^2}-\frac{1}{|x-y|^3}+3\frac{(x_l-y_l)^2}{|x-y|^5} \biggr]. \end{aligned}$$

For lm with l,m=1,2,3, we have

$$\begin{aligned} \frac{\partial^2 G_p}{\partial x_m\partial x_l} =& \frac{1}{4\pi}e^{i\kappa_p|x-y|}(x_l-y_l) (x_m-y_m) \\ &{}\times \biggl[(i\kappa_p)^2\frac{1}{|x-y|^3}-3i \kappa_p\frac{1}{|x-y|^4}+3\frac {1}{|x-y|^5} \biggr]. \end{aligned}$$

3rd Order Partial Derivatives

For all l=1,2,3

$$\begin{aligned} \frac{\partial^3G_p}{\partial x_{l}^{3}} =& \frac{1}{4\pi}e^{i\kappa_p|x-y|}(x_l-y_l) \biggl[3(i\kappa_p)^2\frac {1}{|x-y|^3}-9(i \kappa_p)\frac{1}{|x-y|^4} \\ &{}+(i\kappa_p)^3\frac{(x_l-y_l)^2}{|x-y|^4}+3\frac{1}{|x-y|^5} \\ &{} -6(i\kappa_p)^2\frac{(x_l-y_l)^2}{|x-y|^5}+15i \kappa_p\frac {(x_l-y_l)^2}{|x-y|^6}-15\frac{(x_l-y_l)^2}{|x-y|^7} \biggr]. \end{aligned}$$
(A.1)

For lm with l,m=1,2,3 we have

$$\begin{aligned} \frac{\partial^3G_p}{\partial x_l\partial x_{m}^{2}} =&\frac{\partial^3G_p}{\partial x_m\partial x_l\partial x_m}=\frac {\partial^3G_p}{\partial x_m\partial x_m\partial x_l} \\ =& \frac{1}{4\pi}e^{i\kappa_p|x-y|}(x_l-y_l) \biggl[(i\kappa_p)^2\frac {1}{|x-y|^3}-3i \kappa_p\frac{1}{|x-y|^4} \\ &{}+(i\kappa_p)^3\frac{(x_m-y_m)^2}{|x-y|^4}+3\frac{1}{|x-y|^5} -6(i\kappa _p)^2\frac{(x_m-y_m)^2}{|x-y|^5} \\ &{}+15i\kappa_p\frac{(x_m-y_m)^2}{|x-y|^6}-15\frac {(x_m-y_m)^2}{|x-y|^7} \biggr]. \end{aligned}$$
(A.2)

At last for klm with k,l,m=1,2,3 we have

$$\begin{aligned} \frac{\partial^3G_p}{\partial x_k\partial x_l\partial x_m} =& \frac{1}{4\pi}e^{i\kappa_p|x-y|}(x_k-y_k) (x_l-y_l) (x_m-y_m) \\ &{}\times \biggl[(i\kappa_p)^3\frac{1}{|x-y|^4}-6(i \kappa_p)^2\frac {1}{|x-y|^5}-9i\kappa_p \frac{1}{|x-y|^6}-15\frac{1}{|x-y|^7} \biggr]. \end{aligned}$$
(A.3)

1.2 A.2 Derivatives of the Elastic Fundamental Tensor

In (2.3), the fundamental tensor of the elastic model is given. Now the ij-th element of the fundamental tensor Φ(x,y) can be viewed as:

$$\begin{aligned} \varPhi_{ij}(x,y) = & \frac{1}{4\pi}\sum_{n=0}^{\infty} \frac{i^n}{(n+2) n!} \biggl(\frac {n+1}{{\mu_0}^{\frac{n+2}{2}}}+ \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \kappa^n\delta_{ij}|x-y|^{n-1} \\ &{} - \frac{1}{4\pi}\sum_{n=0}^{\infty} \biggl\{ \frac{i^n(n-1)}{(n+2) n!} \biggl(\frac{1}{{\mu_0}^{\frac{n+2}{2}}} - \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \\ &{}\times\kappa^n|x-y|^{n-3}(x_i-y_i) (x_j-y_j) \biggr\} , \end{aligned}$$

where \(x,y \in\mathbb{R}^{3}\) with xy, see for more details ([15], Chap. 2).

For li,j

$$\begin{aligned} \frac{\partial\varPhi_{ij}}{\partial x_l} = & \frac{1}{4\pi}\sum_{n=0}^{\infty} \biggl\{ \frac{i^n}{(n+2)n!} \biggl(\frac {n+1}{{\mu_0}^{\frac{n+2}{2}}}+ \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \\ &{}\times\kappa^n\delta_{ij}(n-1) (x_l-y_l)|x-y|^{n-3} \biggr\} \\ &{} -\frac{1}{4\pi}\sum_{n=0}^{\infty} \biggl\{ \frac{i^n(n-1)}{(n+2) n!} \biggl(\frac{1}{{\mu_0}^{\frac{n+2}{2}}} - \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \\ &{}\times\kappa^n(n-3) (x_l-y_l) (x_i-y_i) (x_j-y_j)|x-y|^{n-5} \biggr\} . \end{aligned}$$
(A.4)

Similarly, for l=i

$$\begin{aligned} \frac{\partial\varPhi_{ij}}{\partial x_i} = & \frac{1}{4\pi}\sum_{n=0}^{\infty} \biggl\{ \frac{i^n}{(n+2)n!} \biggl(\frac {n+1}{{\mu_0}^{\frac{n+2}{2}}}+ \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \\ &{}\times\kappa^n\delta_{ij}(n-1) (x_l-y_l)|x-y|^{n-3} \biggr\} \\ &{} -\frac{1}{4\pi}\sum_{n=0}^{\infty} \biggl\{ \frac{i^n(n-1)}{(n+2) n!} \biggl(\frac{1}{{\mu_0}^{\frac{n+2}{2}}} - \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \\ &{}\times\kappa^n \bigl[(n-3) (x_l-y_l) (x_i-y_i) (x_j-y_j)|x-y|^{n-5} \biggr\} \\ &{}+(x_j-y_j)|x-y|^{n-3} \bigr], \end{aligned}$$
(A.5)

and for l=j we obtain

$$\begin{aligned} \frac{\partial\varPhi_{ij}}{\partial x_j} =&\frac{1}{4\pi}\sum_{n=0}^{\infty} \biggl\{ \frac{i^n}{(n+2)n!} \biggl(\frac {n+1}{{\mu_0}^{\frac{n+2}{2}}}+ \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \\ &{}\times\kappa^n\delta_{ij}(n-1) (x_l-y_l)|x-y|^{n-3} \biggr\} \\ &{} -\frac{1}{4\pi}\sum_{n=0}^{\infty} \biggl\{ \frac{i^n(n-1)}{(n+2) n!} \biggl(\frac{1}{{\mu_0}^{\frac{n+2}{2}}} - \frac{1}{(\lambda_0+2\mu_0)^{\frac {n+2}{2}}} \biggr) \\ &{}\times\kappa^n \bigl[(n-3) (x_l-y_l) (x_i-y_i) (x_j-y_j)|x-y|^{n-5} \biggr\} \\ &{}+(x_i-y_i)|x-y|^{n-3} \bigr]. \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, M., Sini, M. On the Inverse Elastic Scattering by Interfaces Using One Type of Scattered Waves. J Elast 118, 15–38 (2015). https://doi.org/10.1007/s10659-014-9474-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-014-9474-5

Keywords

Mathematics Subject Classification

Navigation