Skip to main content
Log in

A Large Strain Isotropic Elasticity Model Based on Molecular Dynamics Simulations of a Metallic Glass

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

For an isotropic hyperelastic material, the free energy per unit reference volume, ψ, may be expressed in terms of an isotropic function \(\psi=\bar{\psi}(\mathbf{E})\) of the logarithmic elastic strain E=ln V. We have conducted numerical experiments using molecular dynamics simulations of a metallic glass to develop the following simple specialized form of the free energy for circumstances in which one might encounter a large volumetric strain tr E, but the shear strain \(\sqrt{2}|\mathbf{E}_{0}|\) (with E 0 the deviatoric part of E) is small but not infinitesimal:

This free energy has five material constants—the two classical positive-valued shear and bulk moduli μ 0 and κ 0 of the infinitesimal theory of elasticity, and three additional positive-valued material constants (μ r,ε r,ε c), which are used to characterize the nonlinear response at large values of tr E. In the large volumetric strain range −0.30≤tr E≤0.15 but small shear strain range \(\sqrt {2}|\mathbf{E}_{0}|\lessapprox0.05\) numerically explored in this paper, this simple five-constant model provides a very good description of the stress-strain results from our molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Hencky, H.: Über die form des elastizitätsgesetzes bei ideal elastischen stoffen. Z. Techn. Phys. 9, 215–223 (1928)

    Google Scholar 

  3. Hencky, H.: The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. J. Rheol. 2, 169–176 (1931)

    Article  ADS  Google Scholar 

  4. Hencky, H.: The elastic behavior of vulcanised rubber. Rubber Chem. Technol. 6, 217–224 (1933)

    Article  Google Scholar 

  5. Anand, L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)

    Article  ADS  MATH  Google Scholar 

  6. Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  ADS  Google Scholar 

  7. Rose, J.H., Smith, J.R., Ferrante, J.: Universal features of bonding in metals. Phys. Rev. B 28, 1835–1845 (1983)

    Article  ADS  Google Scholar 

  8. Gearing, B.P., Anand, L.: Notch-sensitive fracture of polycarbonate. Int. J. Solids Struct. 41, 827–845 (2004)

    Article  MATH  Google Scholar 

  9. Henann, D.L., Anand, L.: Fracture of metallic glasses at notches: effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness. Acta Mater. 57, 6057–6074 (2009)

    Article  Google Scholar 

  10. Veprek, R.G., Parks, D.M., Argon, A.S., Veprek, S.: Erratum to Non-linear finite element constitutive modeling of mechanical properties of hard and superhard materials studied by indentation. Mater. Sci. Eng. A 448, 366–378 (2007)

    Article  Google Scholar 

  11. Stacey, F.D., Davis, P.M.: High pressure equations of state with applications to the lower mantle and core. Phys. Earth Planet. Inter. 142, 137–184 (2004)

    Article  ADS  Google Scholar 

  12. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2002)

    Google Scholar 

  13. Cao, A.J., Cheng, Y.Q., Ma, E.: Structural processes that initiate shear localization in metallic glass. Acta Mater. 57, 5146–5155 (2009)

    Article  Google Scholar 

  14. Cheng, Y.Q., Ma, E., Sheng, H.W.: Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009)

    Article  ADS  Google Scholar 

  15. Remington, B.A., Allen, P., Bringa, E.M., Hawreliak, J., Ho, D., Lorenz, K.T., Lorenzana, H., McNaney, J.M., Meyers, M.A., Pollaine, S.W., Rosolankova, K., Sadik, B., Schneider, M.S., Swift, D., Wark, J., Yaakobi, B.: Material dynamics under extreme conditions of pressure and strain rate. Mater. Sci. Technol. 22, 474–488 (2006)

    Article  Google Scholar 

  16. Poirier, J.-P., Tarantola, A.: A logarithmic equation of state. Phys. Earth Planet. Inter. 109, 1–8 (1998)

    Article  ADS  Google Scholar 

  17. Birch, F.: Elasticity and constitution of the earth interior. J. Geophys. Res. 57, 227–286 (1952)

    Article  ADS  Google Scholar 

  18. Carlson, D.E., Hoger, A.: The derivative of a tensor-valued function of a tensor. Q. Appl. Math. 44, 409–423 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lallit Anand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henann, D.L., Anand, L. A Large Strain Isotropic Elasticity Model Based on Molecular Dynamics Simulations of a Metallic Glass. J Elast 104, 281–302 (2011). https://doi.org/10.1007/s10659-010-9297-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9297-y

Keywords

Mathematics Subject Classification (2000)

Navigation