Skip to main content
Log in

On Obtaining Effective Transversely Isotropic Elasticity Tensors

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We consider the problem of finding the transversely isotropic elasticity tensor closest to a given elasticity tensor with respect to the Frobenius norm. A similar problem was considered by other authors and solved analytically assuming a fixed orientation of the natural coordinate system of the transversely isotropic tensor. In this paper we formulate a method for finding the optimal orientation of the coordinate system—the one that produces the shortest distance. The optimization problem reduces to finding the absolute maximum of a homogeneous eighth-degree polynomial on a two-dimensional sphere. This formulation allows us a convenient visualization of local extrema, and enables us to find the closest transversely isotropic tensor numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8(3), 633–671 (1970)

    Article  ADS  Google Scholar 

  2. Bekhterev, P.: Analytical study of generalized Hooke’s law: The use of the method of coordinate transformation. Zh. Rus. Fiz-Him. 58(3), 415–446 (1926). (In Russian)

    Google Scholar 

  3. Bóna, A., Bucataru, I., Slawinski, M.A.: Characterization of elasticity-tensor symmetries using SU(2). J. Elast. 75(3), 267–289 (2004)

    Article  MATH  Google Scholar 

  4. Bóna, A., Bucataru, I., Slawinski, M.A.: Material symmetries of elasticity tensor. Q. J. Mech. Appl. Math. 57(4), 583–598 (2004)

    Article  MATH  Google Scholar 

  5. Bond, W.L.: The mathematics of the physical properties of crystals. Bell Syst. Tech. J. 22, 1–72 (1943)

    MathSciNet  Google Scholar 

  6. Bos, L.P., Gibson, P.C., Kotchetov, M., Slawinski, M.A.: Classes of anisotropic media: A tutorial. Stud. Geophys. Geod. 48, 265–287 (2004)

    Article  Google Scholar 

  7. Chapman, C.M.: Fundamentals of Seismic Wave Propagation. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  8. Cowin, S.C.: Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42(2), 249–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cowin, S.C., Mehrabadi, M.M.: The structure of the linear anisotropic elastic symmetries. Mech. Phys. Solids 40(7), 1459–1471 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81–108 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gazis, D.C., Tadjbakhsh, I., Toupin, R.A.: The elastic tensor of given symmetry nearest to an anisotropic elastic tensor. Acta Crystallogr. 16, 917–922 (1963)

    Article  MathSciNet  Google Scholar 

  12. Hamilton, W.R.: On a new species of imaginary quantities connected with a theory of quaternions. Proc. R. Ir. Acad. 2, 424–434 (1844)

    Google Scholar 

  13. Herman, B.: Some theorems of the theory of anisotropic media. C. R. (Dokl.) Acad. Sci. URSS 48(2), 89–92 (1945)

    MathSciNet  Google Scholar 

  14. Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elast. 82(3), 273–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Moakher, M., Norris, A.N.: The closest elastic tensor of arbitrary symmetry to an elastic tensor of lower symmetry. J. Elast. 85(3), 215–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Norris, A.N.: The isotropic material closest to a given anisotropic material. J. Mech. Mater. Struct. 1(2), 231–246 (2006)

    Google Scholar 

  17. Norris, A.N.: Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material. J. Acoust. Soc. Am. 119(4), 2114–2121 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  19. Slawinski, M.A.: Seismic Waves and Rays in Elastic Media. Elsevier, Amsterdam (2003)

    Google Scholar 

  20. Thomsen, L.: Weak elastic anisotropy. Geophysics 51, 1954–1966 (1986)

    Article  ADS  Google Scholar 

  21. Thompson, W.: On six principal strains of an elastic solid. Philos. Trans. R. Soc. 166, 495–498 (1856)

    Google Scholar 

  22. Ting, T.C.T.: Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int. J. Solids Struct. 40, 7129–7142 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Voigt, W.: Lehrbuch der Kristallphysics. Teubner, Leipzig (1910)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Slawinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochetov, M., Slawinski, M.A. On Obtaining Effective Transversely Isotropic Elasticity Tensors. J Elasticity 94, 1–13 (2009). https://doi.org/10.1007/s10659-008-9180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-008-9180-2

Keywords

Mathematics Subject Classification (2000)

Navigation