Skip to main content

Advertisement

Log in

Brassinosteroids promote growth, fruit quality and protection against Botrytis on Fragaria x ananassa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are steroidal compounds involved in plant growth and development. The aim of this work was to evaluate the effect of 24-epibrassinolide (EP24) and a brassinosteroid spirostanic analogue DI-31 (BB16) on growth promotion, defense and fruit quality of strawberry (Fragaria x ananassa). Results showed that both BRs cause an increase in the leaf greenness, number of leaves and stolons, and the foliar area as compared to control plants. However, whereas plants treated with BB16 exhibited a dry weight increase, plants treated with EP24 did not show significant differences with respect to control plants. The effect of both BRs on the activation of a defense response was also evaluated in strawberry plants, and results revealed that both BRs exert a protective effect against Botrytis cinerea the causal agent of the gray mold disease. The effect of both BRs was also evaluated on strawberry fruits. Results showed that both BRs also reduced the incidence of postharvest infection due to native pathogens. It was further observed that both BRs were more effective at lower concentration (i.e. 0.1 mg l−1). When analyzing the influence of BB16 and EP24 on the quality of the postharvest fruit, it was found that the treatment with both BRs yield fruits with lower acidity, and higher content of soluble solids on the third day after treatment. In addition, lower weight loss, and higher colour quality (i.e. lightness and intensity) were observed in treated fruits as compared with control fruits. These results suggest that BRs could be used as a new crop management strategy, and as alternative to agrochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agüero, J. J., Salazar, S. M., Kirschbaum, D. S., & Jerez, E. F. (2015). Factors affecting fruit quality in strawberries grown in a subtropical environment. International Journal of Fruit Science, 15, 223–234. https://doi.org/10.1080/15538362.2015.1017427.

  • Ali, B., Hayat, S., Hasan, S. A., & Ahmad, A. (2006). Effect of root applied 28-homobrassinolide on the performance of Lycopersiconesculentum. ScientiaHorticulturae, 110, 267–273. https://doi.org/10.1016/j.scienta.2006.07.015.

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8. https://doi.org/10.1016/j.plaphy.2008.10.002.

  • Canales, E., Coll, Y., Hernández, I., Portieles, R., Rodríguez García, M., López, Y., et al. (2016). ‘Candidatus Liberibacter asiaticus,’ causal agent of citrus huanglongbing, is reduced by treatment with brassinosteroids. PLoS One, 11, e0146223. https://doi.org/10.1371/journal.pone.0146223.

  • Coll Y (2015). Determinación del papel del brasinoesteroide 24-epibrasinólida en la respuesta defensiva de Citrus x aurantifolia (Christm) “Swingle” frente a la infección con “Candidatus Liberibacter asiaticus”. Tesis en opción al grado científico de Doctor en Ciencias Biológicas. Universidad de la Habana, La Habana, Cuba.

  • Coll, Y., Coll, F., Amorós, A., & Pujol, M. (2015). Brassinosteroids roles and applications: an up-date. Biologia, 70(6), 726-732. https://doi.org/10.1515/biolog-2015-0085.

  • Cortes, P. A., Terrazas, T., León, T., & Larqué-Saavedra, A. (2003). Brassinosteroid effects on the precocity and yield of cladodes of cactus pear (Opuntiaficus-indica (L.) Mill.). Sci Hortic, 97, 65–73. https://doi.org/10.1016/S0304-4238(02)00080-8.

  • Debes, M. A., Arias, M. E., Grellet-Bournonville, C. F., Wulff, A. F., Martínez-Zamora, M. G., Castagnaro, A. P., & Díaz-Ricci, J. C. (2011). White-fruited Duchesneaindica (Rosaceae) is impaired in ANS gene expression. American Journal of Botany, 98(12), 2077–2083. https://doi.org/10.3732/ajb.1000373.

  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2013). InfoStatversion 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, http://www.infostat.com.ar.

  • Furio, R. N., Albornoz, P. L., Coll, Y., Martinez Zamora, G. M., Salazar, S. M., Martos, G. G., & DiazRicci, J. C. (2019). Effect of natural and synthetic Brassinosteroids on strawberry immune response against Colletotrichum acutatum. European Journal of Plant Pathology, 153(1), 227–241. https://doi.org/10.1007/s10658-018-1551-3.

  • Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9–19. https://doi.org/10.1016/j.nut.2011.08.009.

  • Gomes, M. M. A., Compostrini, E., Rocha, N., Pio, A., Massi, T., & Siqueira, L. (2006). Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passifloraedulis f. flavicarpa). Scientia Horticulturae, 110, 235–240. https://doi.org/10.1016/j.scienta.2006.06.030.

  • Huang, H. Y., Jiang, W. B., Hu, Y. W., Wu, P., Zhu, J. Y., Liang, W. Q., Wang, Z. Y., & Lin, W. H. (2012). BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Molecular Plant, 6(2), 456–469. https://doi.org/10.1093/mp/sss070.

  • Kirschbaum, D. S., & Hancock, J. F. (2000). The strawberry industry in South America. HortScience, 35, 807–811 http://hortsci.ashspublications.org/content/35/5/807.full.pdf.

  • Kirschbaum, D. S., Vicente, C. E., Cano-Torres, M. A., Gambardella-Casanova, M., Veizaga-Pinto, F. K., & Correa-Antunes, L. E. (2016). Strawberry in South America: From the Caribbean to Patagonia. Acta Horticulturae, 947–956. https://doi.org/10.17660/ActaHortic.2017.1156.140.

  • Liu, L., Jia, C., Zhang, M., Chen, D., Chen, S., Guo, R., & Wang, Q. (2014). Ectopic expression of a BZR1-1D transcription factor in brassinosteroidsignalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnology Journal, 12, 105–115. https://doi.org/10.1111/pbi.12121.

  • Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., Kaneta, T., Kamiya, Y., Szekeres, M., & Boshop, G. J. (2005). Patterns of dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant Journal, 42, 262–269. https://doi.org/10.1111/j.1365-313X.2005.02376.x.

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Nahar, K., Kyndt, T., Hause, B., Höfte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115. https://doi.org/10.1094/MPMI-05-12-0108-FI.

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., et al. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898. https://doi.org/10.1046/j.1365-313X.2003.01675.x.

  • Nam, K. H., & Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110, 203–212. https://doi.org/10.1016/S0092-8674(02)00814-0.

  • Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z., & Yu, J. Q. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 36, 789–803. https://doi.org/10.1111/pce.12014.

  • Nunes, C. N., & Emond, J. P. (2007). Relationship between weight loss and visual quality of fruits and vegetables.Proceedings of the Florida state horticultural. Society, 120, 235–245 http://fshs.org/proceedings-o/2007-vol-120/FSHS%20vol.%20120/235-245.pdf.

  • Núñez, M., Torres, W., & Coll, F. (1995). Effectiveness of a synthetic brassinosteroid on potato and tomato yields. Cultivos Tropicales, 16, 26–27.

    Google Scholar 

  • Salazar, S. M., Coll, Y., Viejobueno, J., & Coll, F. (2016). Response of strawberry plants to the application of brassinosteroid under field conditions. Revista Agronómica del Noroeste Argentino, 36(1), 37–41.

    Google Scholar 

  • Sapers, G. M. (1994). Color characteristics and stability of nonbleeding cocktail cherries dyed with carotenoid pigments. Journal of Food Science, 59, 135–138. https://doi.org/10.1111/j.1365-2621.1994.tb06917.x.

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089.

  • Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids: Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158. https://doi.org/10.1104/pp.105.070706.

  • Torres, W., & Núñez, M. (1997). The application of biobras–6 and its effect on potato (Solanumtuberosum L.) yields. CultivosTropicales, 18(2), 8–10.

    Google Scholar 

  • Tulipani, S., Mezzetti, B., Capocasa, F., Bompadre, S., Beekwilder, J., De Vos, C. R., Capanoglu, E., Bovy, A., & Battino, M. (2008). Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food Chemistry, 56(3), 696–704. https://doi.org/10.1021/jf0719959.

    Article  CAS  PubMed  Google Scholar 

  • Vardhini, B. V., & Rao, S. S. R. (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 61, 843–847. https://doi.org/10.1016/S0031-9422(02)00223-6.

  • Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology, 52(2), 80–92. https://doi.org/10.1016/j.lwt.2013.02.004.

  • Vriet, C., Russinova, E., & Reuzeau, C. (2012). Boosting crop yields with plant steroids. Plant Cell, 24, 842–857. https://doi.org/10.1105/tpc.111.094912.

  • Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S., & Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410, 380–383. https://doi.org/10.1038/35066597.

  • Wu, C. Y., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J. L., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145. https://doi.org/10.1105/tpc.107.055087.

  • Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814. https://doi.org/10.1104/pp.109.138230.

  • Xia, X. J., Zhou, Y. H., Ding, J., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2011). Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytologist, 191, 706–720. https://doi.org/10.1111/j.1469-8137.2011.03745.x.

Download references

Acknowledgements

This paper was partially supported with grants of the Universidad Nacional de Tucumán (PIUNT 26/D642), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-0653), CONICET (PUE-2016-0104) and INTA (PNHFA 1106073 and TUSGO 1231101). Authors are grateful to Strawberry Active Germplasm Bank (BGA) from Universidad Nacional de Tucumán (UNT) and Ing. Cecilia Lemme for providing strawberry plants. RNF and VHC are CONICET fellowship, and MGMZ and JCDR is member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Díaz-Ricci.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The manuscript has not been published and is not under consideration for publication elsewhere. All authors have approved the manuscript and agreed to submit the paper to the European Journal of Plant Pathology. The research was conducted in the absence of any commercial relationships that could be considered as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furio, R.N., Salazar, S.M., Martínez-Zamora, G.M. et al. Brassinosteroids promote growth, fruit quality and protection against Botrytis on Fragaria x ananassa. Eur J Plant Pathol 154, 801–810 (2019). https://doi.org/10.1007/s10658-019-01704-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01704-3

Keywords

Navigation