Skip to main content
Log in

Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Both arbuscular mycorrhizal fungi (AMF) Claroideoglomus etunicatum and grass endophytes (Epichloë) could improve disease tolerance. Research is limited on the dual infection by AMF and Epichloë on plant diseases. Bipolaris sorokiniana is a fungal species that causes leaf spot in cereals, and also in perennial ryegrass (Lolium perenne), impacting its growth and production. This experiment tested the dual infection of AMF and Epichloë on perennial ryegrass growth and the physiological and biochemical indexes under limited soil conditions occurs in nature ecosystem. The results showed that infection with B. sorokiniana significantly decreased plant growth and shoot N concentration (P < 0.05), and this negative effect was exaggerated by AMF × Epichloë. The pathogen alone decreased AMF colonization (P < 0.05); however, the interactions of the pathogen and grass endophyte showed the highest value of perennial ryegrass AM colonization. Infection with AMF or Epichloë alone, or the combination of the two, suppressed the occurrence of leaf spot. Epichloë×AMF × B. sorokiniana had the highest amount of β-1,3-glucanase activity and jasmonic acid activity, whereas AMF and Epichloë alone or combined significantly increased the lignin content in diseased plants (P < 0.05). Limited soil nutrients did not affect the inhibition function of AMF and Epichloë for PRG leaf spot disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, M. F., Smith, W. K., Moore, T. S., & Christensen, M. (1981). Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. Lag Ex Steud. New Phytologist, 88, 683–693.

    Article  Google Scholar 

  • Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2002). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3, 267–274.

    Article  Google Scholar 

  • Boller, T., Gehri, A., Mauch, F., & Vgeli, U. (1983). Chitinase in bean leaves induction by ethylene, purification, properties, and possible function. Planta, 157, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Sun, J. Q., Liu, R. J., & Li, M. (2013). Effects of arbuscular mycorrhizal fungus on the seedling growth of grafted watermelon and the defensive enzyme activities in the seedling roots. Chinese Journal of Applied Ecology, 24, 135–141 (in Chinese).

    CAS  PubMed  Google Scholar 

  • Cheng, G. W., & Breen, P. J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116, 865–869.

    Article  CAS  Google Scholar 

  • Clarke, B. B., White, J. F. J., Hurley, R. H., Torres, M. S., Sun, S., & Huff, D. R. (2006). Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease, 90, 994–998.

    Article  PubMed  Google Scholar 

  • Clay, K., & Schardl, C. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. American Naturalist, 160, 99–127.

    Article  Google Scholar 

  • Duan, T. Y., Facelli, E., Smith, S. E., Smith, F. A., & Nan, Z. B. (2011). Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biology and Biochemistry, 43, 571–578.

    Article  CAS  Google Scholar 

  • Feldmann, F., & Boyle, C. (1998). Concurrent development of arbuscular mycorrhizal colonization and powdery mildew infection on three Begonia Hiemalis Cultivars. Journal of Plant Diseases and Protection, 2, 121–129.

    Google Scholar 

  • Fitter, A. H. (1991). Costs and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia, 47, 350–355.

    Article  Google Scholar 

  • Gao, P., Li, Y. D., Guo, Y. E., & Duan, T. Y. (2018). Co-inoculation of an AM fungus and a rhizobium reduce alfalfa spring black stem and leaf spot occurrence caused by Phoma medicaginis. In Crop and Pasture Science (Vol. 69, p. 933). https://doi.org/10.1071/CP18135.

    Chapter  Google Scholar 

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500.

    Article  Google Scholar 

  • Gu, Y. X., Wang, D. J., & Hu, Y. G. (2007). The effect of endophytic fungus on Curvularia lunate in Festuca Arundinacea. Chinese Journal of Grassland, 29, 112–115 (In Chinese).

    Google Scholar 

  • Harper, J. K., Arif, A. M., Ford, E. J., Strobel, G. A., Porco, J. A., Tomer, D. P., Oneill, K. L., Heider, E. M., & Grant, D. M. (2003). Pestacin: A 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 2471–2476.

    Article  CAS  Google Scholar 

  • Hilou, A., Zhang, H., Franken, P., & Hause, B. (2014). Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches. Mycorrhiza, 24, 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. H., Zeng, R. S., & Luo, S. M. (2006). Studies on disease resistance of maize toward sheath blight induced by arbuscular mycorrhizal fungi. Chinese Journal of Eco-Agriculture, 14, 167–169.

    Google Scholar 

  • Jiang, S. P., & Wang, Z. Y. (2006). Study on the resistance of tall fescue infected by endophyte fungus to brown patch. Journal of Anhui Agricultural Science, 34, 4345–4346 (In Chinese).

    Google Scholar 

  • Kauffmann, S., Legrand, M., & Geoffroy, P. (1987). Biological function of pathogenesis-related′proteins: Four PR proteins of tobacco have β-1, 3-glucanase activity. EMBO Journal, 6, 3209–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelemu, S., Jr., J, W., Muñoz, F., & Takayama, Y. (2001). An endophyte of the tropical forage grass Brachiaria brizantha: Isolating, identifying, and characterizing the fungus, and determining its antimycotic properties. Canadian Journal of Microbiology, 47, 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Klironomos, J. N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292–2301.

    Article  Google Scholar 

  • Koch, K. E., & Johnson, C. R. (1984). Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiology, 75, 26–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F. (2016). Influence of grass endophyte and two arbuscular mycorrhizal fungi on leaf spot disease of perennial ryegrass. Master Degree Thesis of Lanzhou University. (In Chinese).

  • Li, M. S., & Yan, X. F. (2014). Jasmonic acid signaling in plants and its biological functions in relation to environment. Acta Ecologica Sinica, 34.

  • Li, F., Guo, Y. E., Christensen, M. J., Gao, P., Li, Y. Z., & Duan, T. Y. (2018). An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza, 28, 159–169.

    Article  PubMed  Google Scholar 

  • Liu, Q., Parsons, A. J., Xue, H., Fraser, k., Ryan, G. D., & Newman, A. N. (2011). Competition between foliar Neotyphodium lolii, endophytes and mycorrhizal Glomus, spp. fungi in Lolium perenne, depends on resource supply and host carbohydrate content. Functional Ecology, 25, 910–920.

    Article  Google Scholar 

  • Ma, M. Z., & Nan, Z. B. (2011). Effects of fungal endophytes from perennial ryegrass on the growth of plant pathogens. Pratacultural Science, 28, 962–968 (In Chinese).

    Google Scholar 

  • Ma, M. Z., Christensen, M. J., & Nan, Z. B. (2015). Effects of the endophyte Epichloë festucae, var. lolii, of perennial ryegrass ( Lolium perenne ) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. European Journal of Plant Pathology, 141, 571–583.

    Article  CAS  Google Scholar 

  • Mack, K. M. L., & Rudgers, J. A. (2008). Balancing multiple mutualists: Asymmetric interactions among plants, arbuscular mycorrhizal fungi and fungal endophytes. Oikos, 117, 310–320.

    Article  Google Scholar 

  • Müller, J. (2003). Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Functional Plant Biology, 30, 419–424.

    Article  PubMed  Google Scholar 

  • Müse, G., Schindler, T., Bergfeld, R., Ruel, K., Jacquet, G., Lapierre, C., Speth, V., & Schopfer, P. (1997). Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta, 201, 146–159.

    Article  Google Scholar 

  • Mustafa, G. B., Randoux, B., Tisserant, J., Fontaine, J., Magnin-Robert, M., Lounès-Hadj, S. A., & Reignault, P. (2016). Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza, 26, 685–697.

    Article  CAS  PubMed  Google Scholar 

  • Nan, Z. B. (1995). Fungicide seed treatments of sainfoil control seed-borne and root-invading fungi. New Zealand Journal of Agricultural Research, 38, 413–420.

    Article  CAS  Google Scholar 

  • Nan, Z. B., & Li, C. J. (2004). Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 24, 605–616 (In Chinese).

    Google Scholar 

  • Novas, M. V., Cabral, D., & Godeas, A. M. (2005). Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis, 40, 23–30.

    Google Scholar 

  • Omacini, M., Eggers, T., Bonkowski, M., Gange, A. C., & Jones, T. H. (2006). Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Functional Ecology, 20, 226–232.

    Article  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–163.

    Article  Google Scholar 

  • Pirttila, A. M., Laukkanen, H., & Hohtola, A. (2002). Chitinase production in pine callus (Pinus sylvestris): A defense reaction against endophytes? Planta, 214, 848–852.

    Article  CAS  PubMed  Google Scholar 

  • Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M., & Azcónaguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53, 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Prestidge, R. A., & Ball, O. J. P. (1993). The role of endophytes in alleviating plant biotic stress in New Zealand. Palmerston North: Proceedings of the Second International Symposium on Acremonium/Grass Interactions, 141–151.

  • Qin, J. H., Lu, Y., Li, X., Zhou, Y., Ren, A. Z., & Gao, Y. B. (2015). Effects of methyl jasmonate treatments and endophyte infection on growth of Achnatherum sibiricum. Chinese Journal of Applied Ecology, 26, 1145–1152 (In Chinese).

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano, J. M., Gianinazzi, S., & Gianinazzi-Pearson, V. (1999). Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza, 4, 237–240.

    Article  Google Scholar 

  • Singh, D. P., Srivastava, J. S., Bahadur, A., & Singh, S. (2004). Arbuscular mycorrhizal fungi induced biochemical changes in pea (Pisum sativum) and their effect on powdery mildew (Erysiphe pisi). Journal of Plant Diseases and Protection, 111, 266–272.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Longdon: Academic press.

    Google Scholar 

  • Snellgrove, R. C., Splittstoesser, W. E., Stribley, D. P., & Tinker, P. B. (2010). The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytologist, 92, 75–87.

    Article  Google Scholar 

  • Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., & Berbee, M. L. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108, 1028–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology & Molecular Biology Reviews MMBR, 67, 491–502.

    Article  CAS  Google Scholar 

  • Sutherland, B. L., & Hogland, J. H. (1989). Effect of ryegrass containing the endophyte Acremonium lolii, on the performance of associated white clover and subsequent crops. Proceedings of the New Zealand Grassland Association, 50, 265–269.

    Google Scholar 

  • Tian, P., Nan, Z. B., & Li, C. J. (2008). Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. European Journal of Plant Pathology, 122, 593–602.

    Article  Google Scholar 

  • Van Wees, S. C., Van, D. E. S., & Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Vigo, C., Norman, J. R., & Hooker, J. E. (2000). Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 49, 509–514.

    Article  Google Scholar 

  • Wang, J. B., Wang, H. F., Wang, H. Y., Ren, J., & Zhang, S. Y. (2009). Study on determination of jasmonic acid in plants by gas chromatography-mass spectrometry. Acta Agriculturae Boreali-Sinica, 24, 226–230.

    Google Scholar 

  • Wang, C. X., Li, X. L., Song, F. Q., Wang, G. Q., & Li, B. Q. (2012). Effects of arbuscular mycorrhizal fungi on fusarium wilt and disease resistance-related enzyme activity in cucumber seedling root. Chinese Journal of Eco-Agriculture, 20, 53–57.

    Article  CAS  Google Scholar 

  • Wen, Z. H., Duan, T. Y., Christensen, M. J., & Nan, Z. B. (2015). Microdochium tabacinum, confirmed as a pathogen of alfalfa in Gansu Province, China. Plant Disease, 99, 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Wright, D. P., Scholes, J. D., & Read, D. J. (1998). Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant, Cell and Environment, 21, 209–216.

    Article  Google Scholar 

  • Zhang, X. X., Li, C. J., & Nan, Z. B. (2010). Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 175, 703–709.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. X., Li, C. J., & Nan, Z. B. (2011). Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochemical Systematics and Ecology, 39, 471–476.

    Article  CAS  Google Scholar 

  • Zhang, X. X., Nan, Z. B., Li, C. J., & Gao, K. (2014). Cytotoxic effect of ergot alkaloids in Achnatherum inebrians infected by the Neotyphodium gansuense endophyte. Journal of Agricultural and Food Chemistry, 62, 7419–7422.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by The National Natural Science Foundation (31100368), The China Agriculture Research System-Green manure (CARS-22), and The China Agriculture Research System-Forage Grass Research System (CARS-34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingyu Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig S1

Shoot dry weight (a) and root dry weight (b) of perennial ryegrass (Lolium perenne) with grass endophyte (E+) and without grass endophyte (E-), infected by Bipolaris sorokiniana, colonized by AMF Glomus etunicatum, NM = not inoculated with AMF. Bars topped by the same lower case letter do not differ significantly between treatments at P ≤ 0.05 by Tukey’s HSD. See Table 1 for ANOVA results. (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Gao, P., Li, F. et al. Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. Eur J Plant Pathol 154, 659–671 (2019). https://doi.org/10.1007/s10658-019-01689-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01689-z

Keywords

Navigation