Skip to main content
Log in

Saprotrophic survival of Magnaporthe oryzae in infested wheat residues

  • Major Reviews
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Wheat blast caused by Magnaporthe oryzae is a relatively new disease that has caused considerable losses in wheat fields of several South American countries, including Brazil. The 2016 report of wheat blast occurrence in Bangladesh raised concern in South Asia where wheat represents a significant crop. The sources of primary inoculum and survival from season to season of the fungus remain largely unknown. The effect of wheat residues on the onset of blast epidemics and the potential for survival of M. oryzae in the residues were studied under subtropical climatic conditions, in the South of Brazil. The objective of this study was to monitor the saprotrophic development of M. oryzae on wheat debris and explore the relative importance of crop residues as a source of inoculum. The wheat cultivars BRS 229 and Anahuac 75, moderately and highly susceptible to the disease, respectively, were inoculated with a spore suspension of 10−5 conidia mL−1 using an aggressive (Py 12.1.209) and a less aggressive (Py 12.1.132) isolate. At maturity, a portion of leaves, stems and spikes were detached from plants, and a group of ten lesions were randomly selected and marked on each type of plant organ. The air-dried plant organs were placed separately inside bags and exposed outside. The experiment was conducted over three different time intervals. Each 14 days, samples were taken from the field and tested for sporulation. The survival of the blast fungus decreased rapidly on the rachis when compared to stems and leaves. Sporulation of the fungus was observed on the wheat residues for up to five months. Based on the results of this study, the possibility that the causal agent of wheat blast survives under Brazilian conditions from one crop to another in wheat residues is very low. The management of crop residues is not a key point to control the development of wheat blast. A strong emphasis should be placed on the presence of other hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bornhofen, E., Todeschini, M. H., Stoco, M. G., Madureira, A., Marchioro, V. S., et al. (2018). Wheat yield improvements in Brazil: Roles of genetics and environment. Crop Science, 57, 1–12.

    Google Scholar 

  • Brunetta, D., Dotto, S. R., Bassoi, M. C., & Miranda, L. C. (2006). Características e desempenho agronômico da cultivar de trigo BRS 229 no Paraná. Pesquisa Agropecuária Brasileira, 41, 889–892.

    Article  Google Scholar 

  • Callaway, E. (2016). Devastating wheat fungus appears in Asia for first time. Nature, 532, 421–422.

    Article  Google Scholar 

  • Castroagudin, V. L., Moreira, S. I., Pereira, D. A. S., Moreira, S. S., Brunner, P. C., et al. (2016). Wheat blast disease caused by Pyricularia graminis- tritici sp. nov. Persoonia, 37, 199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez, A., & Kohli, M. (2015). Alternative hosts of Magnaporthe grisea of wheat in Paraguay (in Spanish). Investigación Agraria, 17, 54–59.

    Article  Google Scholar 

  • Couch, B., & Kohn, L. (2002). A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 94, 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, C. D., & Valent, B. (2017). Wheat blast disease: danger on the move. Tropical Plant Pathology, 42, 201–222.

    Article  Google Scholar 

  • Cruz, C. D., Peterson, G. L., Bockus, W. W., Kankanala, P., Dubcovsky, J., et al. (2016). The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum Pathotype of Magnaporthe oryzae. American Society of Agronomy, 56, 990–1000.

    CAS  Google Scholar 

  • Danelli, A. L. D. (2015). Virulência, processo infeccioso e sensibilidade a fungicidas de Magnaporthe oryzae associado à cultura do trigo. Thesis (Ph.D. course in Agronomy) – Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS.

  • de Asis Reges, J. T., Negrisoli, M. M., Doriga, A. F., Castroágudin, V. L., Maciel, J. L. N., et al. (2016). Pyricularia pennisetigena and P. zingibericola from invasive grasses infect signal grass, barley and wheat Pesquisa Agropecuria. Tropical, 46, 206–214.

    Google Scholar 

  • Dias Martins, T. (2004). Comparação entre métodos para avaliação de transmissão de Magnaporthe grisea através de sementes em triticale. Fitopatologia Brasileira, 29, 425–428.

    Article  Google Scholar 

  • Fernandes, J. M. F., Nicolau, M., Pavan, W. M., Amaral, C., Karrei, M., et al. (2017). A weather-based model for predicting early season inoculum build-up and spike infection by the wheat blast pathogen. Tropical Plant Pathology, 42, 230–237.

    Article  Google Scholar 

  • Fernandez, M. R., Fernandes, J. M., & Sutton, J. C. (1993). Effects of fallow and of summer and winter crops on survival of wheat pathogens in crop residues. Plant Disease, 77, 698–703.

    Article  Google Scholar 

  • Galindo, F. S., Filho, M. C. M. T., Buzetti, S., Santini, J. M. K., Alves, C. J., et al. (2017). Wheat yield in the Cerrado as affected by nitrogen fertilization and inoculation with Azospirillum brasiliense. Pesquisa Agropecuária Brasileira, 52, 794–805.

    Article  Google Scholar 

  • Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., et al. (2018). Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae. mBio, 9(1), e01219–e01217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goel, M. K., Khanna, P., & Kishore, J. (2010). Understanding survival analysis: Kaplan-Meier estimate. International Journal of Ayurveda Research, 1(4), 274–278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulart, A. (2005). Perdas em trigo causadas pela brusone. Pages 123–130 In: Workshop de Epidemiologia de Doenças de Plantas. Viçosa, M. Quantificação de perdas no manejo de doenças de plantas: anais. Viçosa, M: Universidade Federal de Viçosa.

  • Goulart, A. C. P., Sousa, P. G., & Urashima, A. S. (2007). Damages in wheat caused by infection of Pyricularia grisea. (In Portuguese.). Summa Phytopathologica, 33, 358–363.

    Article  Google Scholar 

  • Harmon, P. F., & Latin, R. (2005). Winter survival of the perennial ryegrass pathogen Magnaporthe oryzae in north Central Indiana. Plant Disease, 89, 412–418.

    Article  PubMed  Google Scholar 

  • Horbach, R., Knogge, W., Quezada, A. N., & Deising, H. B. (2011). When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. Journal of Plant Physiology, 168, 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, S., Utiamada, C. M., Igarashi, L. C., Kazuma, A. H., & Lopes, R. S. (1986). Pyricularia sp. em trigo. I. Ocorrência de Pyricularia sp. no estado do Parana. Fitopatologia Brasileira, 11, 351–352.

    Google Scholar 

  • Inoue, Y., Vy, T. T. P., Kentaro, Y., Hokuto, A., Mitsuoka, C., et al. (2017). Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science, 357, 80–83.

    Article  CAS  PubMed  Google Scholar 

  • International Maize and Wheat Improvement Center. CIMMYT Report on Wheat Improvement (1977). El Batan, 1977 Mexico. 245p. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/3883.

  • Khonga, E. B., & Sutton, J. C. (1988). Inoculum production and survival of Gibberella zeae in maize and wheat residues. Plant Pathology, 10, 232–239.

    Google Scholar 

  • Kohli, M. M., Mehta, Y. R., Guzman, E., De Viedma, L., et al. (2011). Pyricularia blast – A threat to wheat cultivation. Czech Journal of Plant Breeding, 47, 130–134.

    Article  Google Scholar 

  • Li, Y., Uddin, W., & Kaminski, J. E. (2014). Effects of relative humidity on infection, colonization and conidiation of Magnaporthe orzyae on perennial ryegrass. Plant Pathology, 63, 590–597.

    Article  CAS  Google Scholar 

  • Maciel, J. L. N., Ceresini, P. C., Castroagudin, V. L., Zala, M., Kema, G. H. J., & McDonald, B. A. (2014). Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology, 104, 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Marangoni, M. S., Nunes, M. P., Fonseca Jr., N., & Mehta, Y. R. (2013). Pyricularia blast on white oats: A new threat to wheat cultivation. Tropical Plant Pathology, 38, 198–202.

    Article  Google Scholar 

  • Munaro, L., Benin, G., Marchioro, V. S., de Assis Franco, F., Silva, R. R., et al. (2014). Brazilian spring wheat homogeneous adaptation regions can be dissected in major mega-enviroments. Crop Science, 54, 1374–1383.

    Article  Google Scholar 

  • Ceresini, P. C., et al. (2018).Wheat blast: from its origins in South America to its emergence as a global threat. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12747.

  • R Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/.

  • Raveloson, H., Ramonta, I. R., Tharreau, D., & Sester, M. (2018). Infected rice residues allowing long term survival of blast pathogen serve as major source of primary inoculum in high altitude upland ecology. Plant Pathology, 67, 610–618.

    Article  Google Scholar 

  • Reis, E. M., Casa, R. T., Forcelini, C. A., et al. (1995). Doenças do trigo. In Kimati H et al (Eds.). Manual de Fitopatologia: Doenças de plantas cultivadas. 3. Ed., 2, (pp. 725–736). São Paulo: Ceres Agronômica

  • Streck, E. V., Dalmolin, R. S. D., Kämpf, N., Pinto, L. S. F. (2008). Solos do Rio Grande do Sul. 2nd ed. Porto Alegre, EMATER/RS-ASCAR.

  • Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the cox model. New York: Springer.

    Book  Google Scholar 

  • Vales, M., Anzoátegui, T., Huallpa, B., & Cazon, M. I. (2018). Review on resistance to wheat blast disease (Magnaporthe oryzae Triticum) from the breeder point-of-view: Use of the experience on resistance to rice blast disease. Euphytica, 214(1).

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the grown stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zhang, C., Zong, H., Zhuge, B., Lu, X., Fang, H., Zhu, J., & Zhuge, J. (2016). Protoplast preparation and polyethylene glycol (PEG)-mediated transformation of Candida glycerinogenes. Biotechnology and Bioprocess Engineering, 21, 95–102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Augusto Pizolotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizolotto, C.A., Maciel, J.L.N., Fernandes, J.M.C. et al. Saprotrophic survival of Magnaporthe oryzae in infested wheat residues. Eur J Plant Pathol 153, 327–339 (2019). https://doi.org/10.1007/s10658-018-1578-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1578-5

Keywords

Navigation