Skip to main content
Log in

Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern hemisphere

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A plethora of oomycetes was isolated mostly from Zostera marina but also from other halophilic plants originating from several locations including the Wadden Sea, Limfjord (Denmark), the Dutch Delta area (the Netherlands), Thau lagoon (France), Lindholmen (Sweden) and Chesapeake Bay (Virginia, U.S.). Based on ITS sequences, seven different groups could be distinguished. The largest group was assigned to Phytophthora gemini (Germany, Sweden, the Netherlands, U.S.). The CoxI sequences of all P. gemini strains were identical indicating that P. gemini is probably an invasive species in the Wadden Sea. A second group was identified as P. inundata (the Netherlands, Denmark), that was also isolated from the halophilic plants Aster tripolium and Salicornia europaea. Four strains, originating from Chesapeake Bay clustered in a monophyletic clade with high bootstrap support at the ITS as well as the CoxI loci. They are phylogenetically closely related to P. gemini and are considered to represent a new species described here as Phytophthora chesapeakensis sp. nov. In addition, Salisapilea sapeloensis was isolated from Zostera noltii. Eleven other strains belonging to three unidentified taxa, originating from the Wadden Sea, the Dutch Delta area and Thau lagoon, clustered each in a monophyletic clade with high bootstrap support at the ITS locus, including Halophytophthora vesicula, the type species of the genus Halophytophthora. Hence, these strains were considered to belong to the Halophytophthora sensu stricto group and probably represent three new Halophytophthora species, informally designated here as Halophytophthora sp-1, Halophytophthora sp-3 and Halophytophthora sp-4 sensu Nigrelli and Thines. Halophytophthora sp-2 was not detected in this study. In addition, P. gemini and Halophytophthora sp-3 were obtained by baiting from locations in the Wadden Sea and Halophytophthora sp-1 was obtained by baiting from the Delta area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anastasiou, C. J., & Churchland, L. M. (1969). Fungi on decaying leaves in marine habitats. Canadian Journal of Botany, 47, 251–257.

    Article  Google Scholar 

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.

    Article  Google Scholar 

  • Brasier, C. M., Sanchez-Hernandez, E., & Kirk, S. A. (2003a). Phytophthora inundata sp. nov., a part heterothallic pathogen of trees and shrubs in wet or flooded soils. Mycological Research, 107, 477–484.

    Article  PubMed  Google Scholar 

  • Brasier, C. M., Cooke, D. E., Duncan, J. M., & Hansen, E. M. (2003b). Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycological Research, 107, 277–290.

    Article  PubMed  Google Scholar 

  • Burgess, T. I., Simamora, A. V., White, D., Wiliams, B., Schwager, M., Stukely, M. J. C., & Hardy, G. E. S. J. (2018). New species from Phytophthora clade 6a: evidence for recent radiation. Persoonia, 41, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Crous, P. W., Verkley, J. Z., Groenwald, J. Z., Samson, R. A. (2009). Fungal biodiversity. CBS laboratory manual series. Utrecht, the Netherlands: CBS-KNAW fungal biodiversity Centre. 221 p.

  • Den Hartog, C. (1987). “Wasting disease” and other dynamic phenomena in Zostera beds. Aquatic Botany, 27(1), 3–14.

    Article  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govers, L. L., Man in ’t Veld, W. A., Meffert, J. P., Bouma, T. J., van Rijswick, P. C. J., Heusinkveld, J. H. T., Orth, R. J., van Katwijk, M. M., & van der Heide, T. (2016). Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems. Proceedings of the Royal Society B, 283(1837), 20160812. https://doi.org/10.1098/rspb.2016.0812.

    Article  CAS  PubMed  Google Scholar 

  • Govers, L. L., van der Zee, E. M., Meffert, J. P., van Rijswick, P. C., Man in ’t Veld, W. A., Heusinkveld, J. H., van der Heide T. (2017). Copper treatment during storage reduces Phytophthora and Halophytophthora infection of Zostera marina seeds used for restoration. Scientific Reports, 43172. https://doi.org/10.1038/srep43172.

  • Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K., & Prospero, S. (2012). Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends in Microbiology, 20(3), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Hüberli, D., Hardy, G. E. S. J., White, D., Williams, N., & Burges, T. I. (2013). Fishing for Phytophthora from Western Australia’s waterways: a distribution and diversity survey. Australasian Plant Patholology, 42, 251–260.

    Article  Google Scholar 

  • Hulvey, J., Telle, S., Nigrelli, L., Lamour, K., & Thines, M. (2010). Salisapiliaceae−a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia, 25, 109–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroon, L. P. N. M., Bakker, F. T., van den Bosch, G. B., Bonants, P. J. M., & Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41, 766–782.

    Article  CAS  PubMed  Google Scholar 

  • Lara, E., & Belbahri, L. (2011). SSU rRNA reveals major trends in oomycete evolution. Fungal Diversity, 49, 93e100.

    Article  Google Scholar 

  • Leano, E. M., Vrijmoed, L. L. P., & Jones, E. B. G. (1998). Physiological studies on Halophytophthora vesicula (Straminipilous fungi) isolated from fallen mangrove leaves from Mai Po, Hong Kong. Botanica Marina, 41, 411–420.

    Article  Google Scholar 

  • Man in ’t Veld, W. A., Rosendahl, K. C., Brouwer, H., & de Cock, A. W. A. M. (2011). Phytophthora gemini sp. nov., a new species isolated from the halophilic plant Zostera marina in the Netherlands. Fungal Biology, 115, 724–732.

    Article  PubMed  Google Scholar 

  • Marano, A. V., Jesus, A. L., de Souza, J. I., Jerônimo, G. H., Gonçalves, D. R., Boro, M. C., Rocha, S. C. O., & Pires-Zottarelli, C. L. A. (2016). Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural environments. Fungal Ecology, 19, 77–88.

    Article  Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Colombia Univ. Press 340 p.

    Google Scholar 

  • Muehlstein, L. K., Porter, D., & Short, F. T. (1991). Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia, 83, 180–191.

    Article  Google Scholar 

  • Newell, S. Y., Miller, I. D., & Fell, I. W. (1987). Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus. Applied and Environmental Microbiology, 53, 2464–2469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nigrelli, L., & Thines, M. (2013). Tropical oomycetes in the German bight – Climate warming or overlooked diversity? Fungal Ecology, 6(2), 152–160.

    Article  Google Scholar 

  • Orth, R. J., & Moore, K. A. (1983). Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation. Science, 222, 51–53.

    Article  CAS  PubMed  Google Scholar 

  • Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck Jr., K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., & Williams, S. L. (2006). A global crisis for seagrass ecosystems. BioScience, 56, 987–996.

    Article  Google Scholar 

  • Safaiefarahani, B., Mostowfizadeh-Ghalamfarsa, R., & Cooke, D. E. L. (2013). Characterisation of Phytophthora inundata according to host range,morphological variation and multigene molecular phylogeny. Phytopathologia Mediterranea, 52(1), 46–65.

    Google Scholar 

  • Sullivan, B. K., Sherman, T. D., Damare, V. S., Lilje, O., & Gleason, F. H. (2013). Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecology, 6, 328–338.

    Article  Google Scholar 

  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols, a guide to methods and applications (pp. 315–322). San Diego: Academic Press.

    Google Scholar 

  • Yang, X., & Hong, C. (2014). Halophytophthora fluviatilis sp. nov. from freshwater in Virginia. FEMS Microbiology Letters, 352(2), 230–237.

    Article  CAS  PubMed  Google Scholar 

  • Zaiko, A., Martinez, J. L., Schmidt-Petersen, J., Ribicic, D., Samuiloviene, A., & Garcia-Vazquez, E. (2015). Metabarcoding approach for the ballast water surveillance--an advantageous solution or an awkward challenge? Marine Pollution Bulletin, 92, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, H. C., Ho, H. H., & Zheng, F. C. (2009). A survey of Phytophthora species on Hainan Island of South China. Journal of Phytopathology, 157, 33–39.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mike Coffey (US) for sequencing Halophytophthora sp-4 and Robert Orth (US), Eduardo Infantes, Per-Olav Moksnes, Louise Eriander (Sweden), Birgit Olesen, Flemming Gertz (Denmark), Matthijs van de Geest (France), Dick de Jong (The Netherlands) for their generous gift of Z. marina seeds and the Fieldwork Company (Jannes Heusinkveld, Remco de Nooij) for installation and collection of baits from the Dutch Wadden Sea area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem A. Man in ’t Veld.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man in ’t Veld, W.A., Rosendahl, K.C.H.M., van Rijswick, P.C.J. et al. Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern hemisphere. Eur J Plant Pathol 153, 341–357 (2019). https://doi.org/10.1007/s10658-018-1561-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1561-1

Keywords

Navigation