Skip to main content
Log in

Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Biodegradable antifungal nanomaterials are a recent novel measure against plant pathogens. In the present investigation, the synthesis and characterization of some ecofriendly nanomaterials, including silica, chitosan, and copper nanoparticles (NPs) and their combination, were carried out. Their fungicidal activity was studied in vitro and in vivo against Botrytis cinerea, the causal agent of gray mold on table grapes. In addition, the effect of those nanomaterials on physical and chemical properties of grape (TSS, TA, TSS/TA ratio and berries colour) were evaluated. Scanning electron microscopy (SEM) and analysis of DNA-binding profile were used to better understand their mechanism of action. SEM showed that chitosan and silica NPs caused inhibition of hyphal growth and/or alteration of hyphal morphology such as cell wall disruption, withering, and excessive septation. NPs interacted with DNA isolated from fungal mats: the highest concentration of chitosan and silica NPs affected DNA integrity and led to a significant degradation. A single application of chitosan or silica NPs at veraison stage was able to reduce gray mold of table grapes. Although further large scale trials are needed, the promising results of this research suggest nanomaterials compounds, i.e. silica and chitosan NPs, as effective antifungal agents for the control of gray mold of table grapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-Elsalam, K. A., Vasil’kov, Y. A., Said-Galiev, E. E., Rubina, M. S., Khokhlov, A. R., Naumkin, A. V., Shtykova, E. V., & Alghuthaymi, M. A. (2018). Bimetallic blends and chitosan nanocomposites: Novel antifungal agents against cotton seedling damping-off. European Journal of Plant Pathology, 151, 57–72.

    CAS  Google Scholar 

  • Abourida, M., & Harb, F. (2014). Synthesis and characterization of amorphous silica Nanoparitcles from aqueous silicates using cationic surfactants. Journal of Metals, Materials and Minerals, 24, 37–42.

    CAS  Google Scholar 

  • Ahmad, M. B., Lim, J. J., Tay, M. Y., Shameli, K., & Ibrahim, N. A. (2011). Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterizations. Molecules, 16, 7237–7248.

    Article  CAS  Google Scholar 

  • Ahmed, A. I. S. (2017). Chitosan and silver nanoparticles as control agents of some Faba bean spot diseases. Journal of Plant Pathology and Microbiology, 8, 421.

    Google Scholar 

  • Baek, S.-H., Kim, B., & Suh, K.-D. (2008). Chitosan particle/multiwall carbon nanotube composites by electrostatic interactions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 316, 292–296.

    Article  CAS  Google Scholar 

  • Barnett, H. L., & Hunter, B. B. (1986). Illustrated genera of imperfect Fungi (4th ed.). New York: Macmillan Publishing Co. 218 pp.

    Google Scholar 

  • Bernardos, A., Marina, T., Žáˇcek, P., Pérez-Esteve, É., Martínez-Máñez, R., Lhotka, M., Kouřimská, L., Pulkrábek, J., & Klouček, P. (2015). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95, 2824–2831.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, P., Menzies, J., Ehret, D., Samuels, L., & Glass, A. D. M. (1992). Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science, 117, 906–912.

    Article  CAS  Google Scholar 

  • Carreño, J., & Martinez, A. (1995). Proposal of an index for the objective evaluation of the colour of red table grapes. Food Research International, 28, 373–377.

    Article  Google Scholar 

  • Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2, 015009.

    Google Scholar 

  • Dann, E. K., & Muir, S. (2002). Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1,3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australasian Plant Pathology, 31, 9–13.

    Article  Google Scholar 

  • Dinh, S.-Q., Joyce, D. C., Irving, D. E., & Wearing, A. H. (2007). Field applications of three different classes of known host plant defence elicitors did not suppress Botrytis cinerea infecting Geraldton waxflower. Australasian Plant Pathology, 36, 142–148.

    Article  CAS  Google Scholar 

  • Dinh, S.-Q., Joyce, D. C., Irving, D. E., & Wearing, A. H. (2008). Effects of multiple applications of chemical elicitors on Botrytis cinerea infecting Geraldton waxflower. Australasian Plant Pathology, 37, 87–94.

    Article  CAS  Google Scholar 

  • Divya, K., Vijayan, S., Tijith, K. G., & Jisha, M. S. (2017). Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers and Polymers, 18(2), 221–230.

    Article  CAS  Google Scholar 

  • El Ghaouth, A., Arul, J., & Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens. Induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research, 96(9), 769–779.

    Article  Google Scholar 

  • He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Lauzardo, A., Velázquez, M., & Guerra-Sánchez, M. (2011). Current status of action mode and effect of chitosan against phytopathogens fungi. African Journal of Microbiology Research, 5, 4243–4247.

    Google Scholar 

  • Jacometti, M. A., Wratten, S. D., & Walter, M. (2010). Review: Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Australian Journal of Grape and Wine Research, 16, 154–172.

    Article  CAS  Google Scholar 

  • Joselito, D., & Soytong, K. (2014). Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. Journal of Agricultural Technology, 10(4), 823–831.

    Google Scholar 

  • Kaur, M., Kalia, A., & Thakur, A. (2017). Effect of biodegradable chitosan–rice-starch nanocomposite films on post-harvest quality of stored peach fruit. Starch, 69, 1600208.

    Article  CAS  Google Scholar 

  • Li, L. H., Deng, J. C., Deng, H. R., Liu, Z. L., & Li, X. L. (2010). Preparation, characterization and antimicrobial activities of chitosan/ag/ZnO blend films. Chemical Engineering Journal, 160, 378–382.

    Article  CAS  Google Scholar 

  • Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., & Yao, K. D. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79, 1324–1335.

    Article  CAS  Google Scholar 

  • Liu, H. Y., Du, X., & Wang, L. S. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Menzies, J., Bowen, P., Ehret, D., & Glass, A. D. M. (1992). Foliar application of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. Journal of the American Society for Horticultural Science, 117, 902–905.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal growth for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative Food Science & Emerging Technologies, 14, 78–84.

    Google Scholar 

  • Moslem, M. A., Abd-Elsalam, K. A., Bahkali, A. H., & Yassin, M. A. (2010). First morpho-molecular identification of Penicillium griseofulvum and P. aurantiogriseum toxicogenic isolates associated with blue mold on apple. Foodborne Pathogens and Disease, 7, 857–861.

    Article  CAS  PubMed  Google Scholar 

  • Mott, D., Galkowski, J., Wang, L. Y., Luo, J., & Zhong, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23, 5740–5745.

    Article  CAS  PubMed  Google Scholar 

  • Moussa, S. H., Tayel, A. A., Alsohim, A. S., & Abdallah, R. R. (2013). Botryticidal growth of Nanosized silver–chitosan composite and its application for the control of gray Mold in strawberry. Journal of Food Science, 78, 1589–1594.

    Article  CAS  Google Scholar 

  • Muzzarelli, R. A. (2011). Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review. Carbohydrate Polymers, 84, 54–63.

    Article  CAS  Google Scholar 

  • Nair, R. & Kumar, D.S. (2013). Plant Diseases—Control and Remedy Through Nanotechnology. pp. 231–244. Book Crop Improvement Under Adverse Conditions Edited by Narendra Tuteja and Sarvajeet Singh Gill.

  • Nemati, A., Shadpour, S., Khalafbeygi, H., Ashraf, S., Barkhi, M., & Soudi, R. M. (2015). Efficiency of hydrothermal synthesis of nano/micro sized copper and study on in vitro antifungal activity. Materials and Manufacturing Processes, 30(1), 63–69.

    Article  CAS  Google Scholar 

  • Pichyangkura, R., & Chatchawan, S. (2015). Bio stimulant activity of chitosan in horticulture. Scientia Horticulturae, 195, 49–65.

    Article  CAS  Google Scholar 

  • Rabea, E. I., & Steurbaut, W. (2010). Chemically modified chitosans as antimicrobial agents against some plant pathogenic bacteria and fungi. Plant Protection Science, 4, 149–158.

    Article  Google Scholar 

  • Reglinski, T., Elmer, P. A. G., Taylor, J. T., Wood, P. N., & Hoyte, S. M. (2010). Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology, 59, 882–890.

    Article  CAS  Google Scholar 

  • Rossi, L. M., Shi, L. F., Quina, F. H., & Rosenzweig, Z. (2005). Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. Langmuir, 21, 4277–4280.

    Article  CAS  PubMed  Google Scholar 

  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., Raliya, R., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353.

    Article  CAS  PubMed  Google Scholar 

  • Salahuddin, N., Elbarbary, A., Allam, N., & Hashim, A. F. (2018). Chitosan modified with 1,3,4-oxa(thia)diazole derivatives with high efficacy to heal burn infection by Staphylococcus aureus. Journal of Bioactive and Compatible Polymers, 3(3), 254–268.

    Article  CAS  Google Scholar 

  • Sanford, P. A. (2003). Commercial sources of chitin and chitosan and their utilization. In K. M. Varum, A. Domard, & O. SmidsrØd (Eds.), Advances in chitin science (Vol. 6, pp. 35–42). Trondheim: NTNU.

    Google Scholar 

  • Soytong, K., Charoenporn, C., & Kanokmedhakul, S. (2013). Evaluation of microbial elicitors to induce plant immunity for tomato wilt. African Journal of Microbiology Research, 7(19), 1993–2000.

    Article  CAS  Google Scholar 

  • Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of mono disperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62–69.

    Article  Google Scholar 

  • Suhartono, D. (2015). Preparation of chitosan material and its antifungal activity for bamboo. International Journal of Science and Research, 6, 1586–1590.

    Google Scholar 

  • Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2014). Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnology, 8(3), 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Usman, M. S., El Zowalaty, M. E., Shameli, K., Zainuddin, N., Salama, M., & Ibrahim, N. A. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International Journal of Nanomedicine, 18, 4467–4479.

    Google Scholar 

  • Xu, L., Cao, L., Li, F., Wang, X., & Huang, Q. (2014). Utilization of chitosan–lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. Journal of Dispersion Science and Technology, 35, 544–550.

    Article  CAS  Google Scholar 

  • Xue, J., Luo, Z., Li, P., Ding, Y., Cui, Y., & Wu, Q. (2014). A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Scientific Reports, 4, 5408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef, K., & Roberto, S. R. (2014a). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biology and Technology, 87, 95–102.

    Article  CAS  Google Scholar 

  • Youssef, K., & Roberto, S. R. (2014b). Salt strategies to control Botrytis mold of 'Benitaka' table grapes and to maintain fruit quality during storage. Postharvest Biology and Technology, 95, 95–102.

    Article  CAS  Google Scholar 

  • Youssef, K., Ligorio, A., Sanzani, S. M., Nigro, F., & Ippolito, A. (2012). Control of storage diseases of citrus by pre- and postharvest application of salts. Postharvest Biology and Technology, 72, 57–63.

    Article  CAS  Google Scholar 

  • Youssef, K., Hashim, A. F., Margarita, R., Alghuthaymi, M. A., & Abd-Elsalam, K. A. (2017). Antifungal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on Citrus fruit. The Philippine Agricultural Scientist, 100(1), 69–78.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the International Foundation for Science, Stockholm, Sweden, through a grant to Ms. Ayat F. Hashim (F5853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayat F. Hashim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The manuscript was prepared under compliance with ethical standards.

Animal studies and human participants

This article does not contain any studies with human participants or animal performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, A.F., Youssef, K. & Abd-Elsalam, K.A. Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. Eur J Plant Pathol 154, 377–388 (2019). https://doi.org/10.1007/s10658-018-01662-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01662-2

Keywords

Navigation