Skip to main content
Log in

Gene co-expression network for Xanthomonas-challenged cassava reveals key regulatory elements of immunity processes

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cassava, Manihot esculenta Crantz, is one of the major crops in developing countries. One of the main limitations in cassava production is Cassava Bacterial Blight (CBB), a disease caused by the gram-negative bacterium Xanthomonas axonopodis pv. manihotis (Xam). Although some resistant varieties have been identified, the mechanisms underlying cassava resistance to Xam remain largely unclarified. In this study, we characterized gene expression changes induced by Xam in resistant cassava plants along three different time points. Clustering analysis of differentially expressed genes (DEGs) induced by Xam inoculation showed four main groups of genes: early upregulated genes, late upregulated genes, genes constantly repressed and genes with small changes. Based on the data generated, a co-expression network was constructed, allowing the identification of hub genes associated to immune responses (Coiled Coil-Nucleotide Binding-Leucine Rich Repeat (CC-NB-LRR protein) and co-regulated with the phenolic metabolism (WD40 repeat-like protein). We characterized four transcription factor (TF) families that have been widely associated to the immune response in plants such as NAC (NAM (no apical meristem)/ATAF (Arabidopsis transcription activation factor)/CUC2 (cup-shaped cotyledon), bZIP (basic leucine zipper), WRKY and TCP (Teosinte branched1 (TB1) /Cincinnata (CIN)/ proliferating cell factor (PCF). In total 111, 86, 102 and 36 non-redundant genes were assigned to these TF families. Among these, seven WRKY, seven NAC, two bZIP and one TCP TFs, changed their expression in cassava plants inoculated with Xam, and were localized in the network as being co-expressed with other 41 DEGs. In addition four differentially expressed genes co-localized with QTLs associated to CBB resistance. This result shows the importance of combining gene expression, network reconstruction and mapping to identify proteins involved in plant immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., et al. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309, 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Martinez, J. A., & Sinha, N. (2013). Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Frontiers in Plant Science, 4, 406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrecht, T., & Argueso, C. T. (2017). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Annals of Botany, 119, 725–735.

    CAS  PubMed  Google Scholar 

  • Alexa, A., & Rahnenfuhrer, J. (2016). topGO, Enrichment analysis for gene ontology. R package version 2.28.0.

  • Alonso, R., Onate-Sanchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., et al. (2009). A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 21, 1747–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez, E. & Llano, G. (2002). Enfermedades del cultivo de la yuca y métodos de control. In Ospina B, Ceballos H (Eds) La yuca en el tercer milenio, Sistemas modernos de producción, procesamiento, utilización y comercialización. Cali, Colombia. CIAT. pp 79–83.

  • Alves, M., Dadalto, S., Gonçalves, A., De Souza, G., Barros, V., & Fietto, L. (2013). Plant bZIP transcription factors responsive to pathogens. a review. International Journal of Molecular Sciences, 14, 7815–7828.

    Article  CAS  PubMed  Google Scholar 

  • An, J., Guo, Z., Gou, X., & Li, J. (2011). TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana. Plant Signal Behavior, 6, 1117–1118.

    Article  CAS  Google Scholar 

  • Barah, P., BN, M. N., Jayavelu, N. D., Sowdhamini, R., Shameer, K., & Bones, A. M. (2016). Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Research, 44, 3147–3164.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee, S., Garner, C. M., & Gassmann, W. (2013). New clues in the nucleus, transcriptional reprogramming in effector-triggered immunity. Frontiers in Plant Science, 4, 364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Birkenbihl, R. P., Liu, S., & Somssich, I. E. (2017). Transcriptional events defining plant immune responses. Current Opinion in Plant Biology, 38, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Bolouri Moghaddam, M. R., & Van den Ende, W. (2013). Sweet immunity in the plant circadian regulatory network. Journal of Experimental Botany, 64, 1439–1449.

    Article  CAS  PubMed  Google Scholar 

  • Bredeson, J. V., Lyons, J. B., Prochnik, S. E., Wu, G. A., Ha, C. M., Edsinger-Gonzales, E., Grimwood, J., Schmutz, J., Rabbi, I. Y., Egesi, C., Nauluvula, P., Lebot, V., Ndunguru, J., Mkamilo, G., Bart, R. S., Setter, T. L., Gleadow, R. M., Kulakow, P., Ferguson, M. E., Rounsley, S., & Rokhsar, D. S. (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 34, 562–570. https://doi.org/10.1038/nbt.3535.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W. J., & Zhu, T. (2004). Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 9, 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions, shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  CAS  PubMed  Google Scholar 

  • Corrêa, L.G., Riaño-Pachón, D.M., Schrago, C.G., dos Santos, R.V., Mueller-Roeber, B., Vincentz, M. (2008). The role of bZIP transcription factors in green plant evolution: Adaptive features emerging from four founder genes. PLoS One, 3, e2944.

  • Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research, InterJournal Complex Systems. 1695. http://igraph.org

  • Dangl, J. L., Horvath, D. M., & Staskawicz, B. J. (2013). Pivoting the plant immune system from dissection to deployment. Science, 341(746–51), 10.

    PubMed Central  Google Scholar 

  • Danisman, S., van Dijk, A. D., Bimbo, A., van der Wal, F., Hennig, L., de Folter, S., et al. (2013). Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany, 64, 5673–5685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davuluri, R. V., Sun, H., Palaniswamy, S. K., Matthews, N., Molina, C., Kurtz, M., & Grotewold, E. (2003). AGRIS, Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics, 4, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz, P., Herrera, M., Ochoa, J. C., Medina, A., Prias, M., Verdier, V., Chavarriaga, P., & López, C. (2018). The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta, 247, 1031–1042. https://doi.org/10.1007/s00425-018-2863-4.

    Article  CAS  Google Scholar 

  • Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30, 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT statistical database (n.d.). https://www.faostat.fao.org

  • Fletcher, J. C. (2001). The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis. Development, 128, 1323–1333.

    CAS  PubMed  Google Scholar 

  • Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., et al. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17, 3470–3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbutt, C. C., Bangalore, P. V., Kannar, P., & Mukhtar, M. S. (2014). Getting to the edge: Protein dynamical networks as a new frontier in plant-microbe interactions. Frontiers in Plant Science, 5, 312.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner, C. M., Kim, S. H., Spears, B. J., & Gassmann, W. (2016). Express yourself: Transcriptional regulation of plant innate immunity. Seminars in Cell & Developmental Biology, 56, 150–162.

    Article  CAS  Google Scholar 

  • Gwinner, F., Acosta-Martin, A. E., Boytard, L., Chwastyniak, M., Beseme, O., Drobecq, H., et al. (2013). Identification of additional proteins in differential proteomics using protein interaction networks. Proteomics, 13, 1065–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, W., Wei, Y., Xia, Z., Yan, Y., Hou, X., Zou, M., et al. (2015). Genome-wide identification and expression analysis of the NAC transcription factor family in cassava. PLoS One, 10, e0136993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, C. S., Kolevski, B., & Smyth, D. R. (2002). TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 14, 1359–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasov, T. L., Chae, E., Herman, J. J., & Bergelson, J. (2017). Mechanisms to mitigate the trade-off between growth and defense. Plant Cell, 29, 666–680. https://doi.org/10.1105/tpc.16.00931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kpemoua, K., Boher, B., Nicole, M., Calatayud, P., & Geiger, J. P. (1996). Cytochemistry of defence responses in cassava infected by Xanthomonas campestris pv. manihotis. Canadian Journal of Microbiology, 42, 1131–1143. https://doi.org/10.1139/m96-145.

    Article  CAS  Google Scholar 

  • Leal, L. G., Perez, A., Quintero, A., Bayona, A., Ortiz, J. F., Gangadharan, A., et al. (2013). Identification of immunity-related genes in Arabidopsis and cassava using genomic data. Genomics, Proteomics & Bioinformatics, 11, 345–353.

    Article  CAS  Google Scholar 

  • Leal, L. G., López, C., & López-Kleine, L. (2014a). Construction and comparison of gene co-expression networks shows complex plant immune responses. Peer J, 2, e610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal, L.G., López, C., López-Kleine, L. (2014b). Construction and Comparison of Gene Co-expression Networks Based on Immunity Microarray Data from Arabidopsis, Rice, Soybean, Tomato and Cassava. In Advances in Computational Biology, editor J.V. Rogers. p. 13–19. Nova Publishers.

  • Li, B., Gaudinier, A., Tang, M., Taylor-Teeples, M., Nham, N. T., Ghaffari, C., et al. (2014). Promoter-based integration in plant defense regulation. Plant Physiolyology, 166, 1803–1820.

    Article  CAS  Google Scholar 

  • Li, B., Meng, X., Shan, L., & He, P. (2016). Transcriptional regulation of pattern-triggered immunity in plants. Cell Host & Microbe, 19, 641–650. https://doi.org/10.1016/j.chom.2016.04.011.

    Article  CAS  Google Scholar 

  • López, C., & Bernal, A. (2012). Cassava bacterial blight: Using genomics for the elucidation and Management of an old Problem. Tropical Plant Biology, 5, 117–126.

    Article  CAS  Google Scholar 

  • Lozano, J. C. (1986). Cassava bacterial blight. a manageable disease. Plant Disease, 70, 1089–1093.

    Article  Google Scholar 

  • Maugarny Calès, A., Gonçalves, B., Jouannic, S., Melkonian, M., Wong, G. K. S., & Laufs, P. (2016). Apparition of the NAC transcription factors predates the emergence of land plants. Molecular Plant, 9, 1345–1348.

    Article  CAS  PubMed  Google Scholar 

  • McCallum, E. J., Anjanappa, R. B., & Gruissem, W. (2017). Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology, 38, 50–58.

    Article  PubMed  Google Scholar 

  • Mejia-Guerra, M. K., Pomeranz, M., Morohashi, K., & Grotewold, E. (2012). From plant gene regulatory grids to network dynamics. Biochimica et Biophysica Acta, 1819, 454–465.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. C., Chezem, W. R., & Clay, N. K. (2016). Ternary WD40 repeat-containing protein complexes: Evolution, composition and roles in plant immunity. Frontiers in Plant Sciences, 6, 1108.

    Google Scholar 

  • Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. (2013). TreeTFDB: An integrative database of the transcription factors from six economically important tree crops for functional predictions and comparative and functional genomics. DNA Research, 20, 151–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhtar, M. S., Carvunis, A. R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., et al. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 333, 596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Bodnar, A., Perez-Quintero, A. L., Gomez-Cano, F., Gil, J., Michelmore, R., Bernal, A., et al. (2014). RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis. Plant Cell Reports, 33, 1901–1912.

    Article  CAS  PubMed  Google Scholar 

  • Na, J. K., Kim, J. K., Kim, D. Y., & Assmann, S. M. (2015). Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. Jornal of Experimental. Botany, 66, 4023–4033.

    CAS  Google Scholar 

  • Nagata, T., Hosaka-Sasaki, A., & Kikuchi, S. (2015). The evolutionary diversification of genes that encode transcription factor proteins in plants. In D. H. Gonzalez (Ed.), Plant Transcription factors (pp. 73–97). Cambridge: Academic Press.

    Google Scholar 

  • Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149, 88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., & Hervé, C. (2007). TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution, 65, 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, S. P., & Somssich, I. E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiology, 150, 1648–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Rodriguez, P., Riano-Pachon, D. M., Correa, L. G., Rensing, S. A., Kersten, B., & Mueller-Roeber, B. (2010). PlnTFDB: Updated content and new features of the plant transcription factor database. Nucleic Acids Research, 38, D822–D827.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C. M., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.

    Article  CAS  PubMed  Google Scholar 

  • Prochnik, S., Marri, P. R., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., Rodriguez, F., Fauquet, C., Tohme, J., Harkins, T., Rokhsar, D. S., & Rounsley, S. (2012). The cassava genome: Current Progress, Future Directions. Tropical Plant Biology, 5, 88–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruneda-Paz, J. L., Breton, G., Para, A., & Kay, S. A. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science, 323, 1481–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Ramu, P., Esuma, W., Kawuki, R., Rabbi, I. Y., Egesi, C., Bredeson, J. V., Bart, R. S., Verma, J., Buckler, E. S., & Lu, F. (2017). Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nature Genetics, 49, 959–963. https://doi.org/10.1038/ng.3845 Epub 2017 Apr 17.

    Article  CAS  PubMed  Google Scholar 

  • Ranf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 38, 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.

    Article  CAS  PubMed  Google Scholar 

  • Rushton, P. J., Somssich, I. E., Ringler, P., & Shen, Q. J. (2010). WRKY transcription factors. Trends in Plant Science, 15, 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Schippers, J. H. M. (2015). Transcriptional networks in leaf senescence. Current Opinion in Plant Biology, 27, 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Smykowski, A., Zimmermann, P., & Zentgraf, U. (2010). G-box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physioogy, 153, 1321–1331.

    Article  CAS  Google Scholar 

  • Soto Sedano, J. C., Mora Moreno, R. E., Mathew, B., Léon, J., Gómez Cano, F., Ballvora, A., et al. (2017). Major novel QTL for resistance to cassava bacterial blight identified through a multi-environmental analysis. Frontiers in Plant Science, 8, 1169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor-Teeples, M., Lin, L., de Lucas, M., Turco, G., Toal, T. W., Gaudinier, A., et al. (2015). An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature, 517, 571–575.

    Article  CAS  PubMed  Google Scholar 

  • Ülker, B., & Somssich, I. E. (2004). WRKY transcription factors: From DNA binding towards biological function. Current Opinion in Plant Biology, 7, 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Voorrips, R. E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Y., Shi, H., Xia, Z., Tie, W., Ding, Z., Yan, Y., et al. (2016). Genome-wide identification and expression analysis of the WRKY gene family in cassava. Frontiers in Plant Science, 7, 25.

    PubMed  PubMed Central  Google Scholar 

  • Welner, D. H., Deeba, F., Leggio, L. L., & Skriver, K. (2015). NAC transcription factors: From structure to function in stress-associated networks. In D. H. Gonzalez (Ed.), Plant Transcription Factors (pp. 199–212). Cambridge: Academic Press.

    Google Scholar 

  • Weßling, R., Epple, P., Altmann, S., He, Y., Yang, L., Henz, S. R., et al. (2014). Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host & Microbe, 16, 364–375.

    Article  CAS  Google Scholar 

  • Wydra, K., & Verdier, V. (2002). Occurrence of cassava diseases in relation to environmental, agronomic and plant characteristics. Agriculture, Ecosystems & Environment, 93, 211–226.

    Article  Google Scholar 

  • Yilmaz, A., Nishiyama Jr., M. Y., Fuentes, B. G., Souza, G. M., Janies, D., Gray, J., et al. (2009). GRASSIUS: A platform for comparative regulatory genomics across the grasses. Plant Physiology, 149, 171–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Dodds, P. N., & Bernoux, M. (2017). What do we know about NOD-like receptors in plant immunity? Annual Review of Phytopathology, 55, 205–229.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. Y., Sun, Y., & Wang, Z. Y. (2012). Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq). Methods in Molecular Bioogy, 876, 173–188. https://doi.org/10.1007/978-1-61779-809-2_14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Manihot Biotec and LAMFU groups for fruitful discussions of the manuscript.

Funding

This study was funded by COLCIENCIAS (Colombian Administrative Department for the Advancement of Science) 521–2011 and 0794–2013. JS received a PhD scholarship from Colciencias (call 528) and FG was supported by the Faculty of Sciences at Universidad de los Andes.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization of the research was done by CL, LLK, AB and SR. JCSS and FGC conducted the inoculation experiments under the guidance of CL and AB. LLK conducted the statistical analysis. FGC conducted the bioinformatics analysis. CL and FGC wrote the paper. All authors read, edited and approved the manuscript.

Corresponding authors

Correspondence to Liliana López-Kleine or Camilo Ernesto López.

Ethics declarations

Conflict of interest

Author FG declares that he has no conflict of interest. Author JS declares that she has no conflict of interest. Author SR declares that she has no conflict of interest Author AB declares that she has no conflict of interest. Author LL declares that she has no conflict of interest Author CL declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Supplemental Fig. 1

Distribution of transcriptome expression (log2 CPM) of DEGs by cluster and days tested. (XLSX 224 kb) (PDF 1215 kb)

Supplemental Fig. 2

Co-expression network. a. Degree distribution of whole network b. Physical characteristics of each of the networks shown in a. (XLSX 137 kb) (PDF 186 kb)

Supplemental Fig. 3

Co-expression network associated to immune responses. a. Toy model describing the way as the different co-expression networks were built. Green nodes represent DEGs. b. Degree distribution of reduced sub-network. C. Physical characteristics of each of the subnetworks of DEG including their direct connectors. (XLSX 152 kb) (PDF 391 kb)

Supplemental Fig. 4

Comparison of NAC, bZIP, WRKY, and TCP candidates families to be involved in cassava’s resistance to Xam. TFs reported previously (black circles), and TF identified in the current study (green circles). (XLSX 14 kb) (PDF 10 kb)

Supplemental Fig. 5

Cassava resistance and susceptible responses genes expression profile. a. Comparison of susceptible and resistance cassava genes. Groups 5 and 7 represent Each group represent b. Expression profile of each of the gene groups in A. (PDF 1215 kb) (PNG 159 kb)

Supplemental table 1

(PDF 186 kb) (XLSX 46 kb)

Supplemental table 2

(XLSX 106 kb)

Supplemental tables 3, 4, 5 and 6

: GOs overrepresented in DEGs from cluster 1, cluster 2, cluster 3 and cluster 4, respectively. (XLSX 51 kb)

Supplemental table 7

NAC protein sequences. Sheet Summary: Gene cassava IDs and protein sequences (cassava genome V6.1) associated with previous report. Sheet Mochida et al. 2013: Protein sequences and gene IDs reported in Mochida et al. 2013, along with results of the blastp search carried out to associate previous protein sequences reported to current genome version. Sheet Hu et al. 2015: Protein sequences and gene IDs reported in Hu et al. 2015, along with results of the blastp search carried out to associate previous protein sequences reported to current genome version. (XLSX 197 kb)

Supplemental table 8

bZIP protein sequences. Sheet Summary: Gene cassava IDs and protein sequences (cassava genome V6.1) associated with previous report. Sheet Mochida et al. 2013: Protein sequences and gene IDs reported in Mochida et al. 2013, along with results of the blastp search carried out to associate previous protein sequences reported to current genome version. Sheet Hu et al. 2016: Protein sequences and gene IDs reported in Hu et al. 2016, along with results of the blastp search carried out to associate previous protein sequences reported to current genome version. (XLSX 224 kb)

Supplemental table 9

WRKY protein sequences. Sheet Summary: Gene cassava IDs and protein sequences (cassava genome V6.1) associated with previous report. Sheet Mochida et al. 2013: Protein sequences and gene IDs reported in Mochida et al. 2013, along with results of the blastp search carried out to associate previous protein sequences reported to current genome version. Sheet Wei et al. 2016: Protein sequences and gene IDs reported in Wei et al. 2016, along with results of the blastp search carried out to associate previous protein sequences reported to current genome version. (XLSX 137 kb)

Supplemental table 10

CTP protein sequences. Sheet Summary: Gene cassava IDs and protein sequences (cassava genome V6.1) associated with previous report. Sheet Mochida et al. 2013: Protein sequences and gene IDs reported in Mochida et al. 2013, along with results of the blastp search carried out to associate previous protein sequences reported to current genome version. (XLSX 152 kb)

Supplemental table 11

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Cano, F., Soto, J., Restrepo, S. et al. Gene co-expression network for Xanthomonas-challenged cassava reveals key regulatory elements of immunity processes. Eur J Plant Pathol 153, 1083–1104 (2019). https://doi.org/10.1007/s10658-018-01628-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01628-4

Keywords

Navigation