Skip to main content
Log in

Inactivation of plant pathogens in irrigation water runoff using a novel UV disinfection system

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Untreated recycled irrigation water has been shown to introduce and spread plant pathogens such as Pythium and Phytophthora in commercial nurseries. Nevertheless, few nurseries currently treat their recycled irrigation water. Instead, nurseries use prophylactic pesticides to control the spread of plant pathogens, which increases costs and promotes the growth of resistant pathogens. Of interest to California is the spread of Phytopthora ramorum, causal agent of Sudden Oak Death (SOD), responsible for the death of tens of thousands of trees in California and Oregon. This study investigated the use of a novel UV disinfection system to inactivate P. ramorum and other microbial contaminants at the National Ornamental Research Site at the Dominican University of California (NORS-DUC). In this system, the UV lamps do not come in contact with the water and hence remain free of the ‘lamp fouling’ problem. Tests on waters having the same characteristics as run-off from commercial nurseries showed a minimum of 3.7 log removal of bacterial species, 91.7% reduction of fungal counts, and 100% inactivation of the P. ramorum in the effluent. Treating the run-off from plant nurseries limits the spread of plant pathogens and enables the onsite re-use of the run-off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Orf, M., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., Burton, F., Bolton, G. (2014). Wastewater engineering: Treatment and resource recovery. McGraw Hill Education, New York.

  • Ali-Shtayeh, M., & MacDonald, J. (1991). Occurrence of Phytophthora species in irrigation water in the Nablus area (West Bank of Jordan). Phytopathologia Mediterranea, 30, 143–150.

    Google Scholar 

  • APHA (2005). Standard methods for the examination of water and wastewater. In (21st ed.). American Public Health Association/American Water Works Association/Water Environment Federation Washington, DC.

  • Banihashemi, Z., MacDonald, J. D., & Lagunas-Solar, M. C. (2010). Effect of high-power monochromatic (pulsed UV laser) and low-power broadband UV radiation on Phytophthora spp. in irrigation water. European Journal of Plant Pathology, 127(2), 229–238.

    Article  Google Scholar 

  • Bolton, J. R., & Linden, K. G. (2003). Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. ASCE Journal of Environmental Engineering, 129, 209–216.

    Article  CAS  Google Scholar 

  • Crittenden, J. C., Trussel, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2003). Water treatment: Principles and design (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: APS Press.

    Google Scholar 

  • Ferguson, A. J., & Jeffers, S. N. (1999). Detecting multiple species of Phytophthora in container mixes from ornamental crop nurseries. Plant Disease, 83(12), 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Ghimire, S. R., Richardson, P. A., Kong, P., Hu, J., Lea-Cox, J. D., Ross, D. S., Moorman, G. W., & Hong, C. (2011). Distribution and diversity of Phytophthora species in nursery irrigation reservoir adopting water recycling system during winter months. Journal of Phytopathology, 159(11–12), 713–719.

    Article  Google Scholar 

  • Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K., & Prospero, S. (2012). Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends in Microbiology, 20(3), 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Hong, C. X., & Moorman, G. W. (2005). Plant pathogens in irrigation water: Challenges and opportunities. Critical Reviews in Plant Sciences, 24(3), 189–208.

    Article  Google Scholar 

  • Hong, C., Richardson, P., Kong, P., & Bush, E. (2003). Efficacy of chlorine on multiple species of Phytophthora in recycled nursery irrigation water. Plant Disease, 87(10), 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Brousseau, S., Henkes, M., Kosta, K., Suslow, K., Posadas, A., & Ghosh, S. (2011). Phytophthora ramorum research at the National Ornamental Research Site at the Dominican University of California. New Zealand Journal of Forestry Science, 41, 101–113.

    Google Scholar 

  • Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., Aguín Casal, O., Bakonyi, J., Cacciola, S. O., Cech, T., & Chavarriaga, D. (2016). Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46, 134–163.

    Article  Google Scholar 

  • Kong, P., Hong, C., Jeffers, S. N., & Richardson, P. A. (2003). A species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water. Phytopathology, 93(7), 822–831.

    Article  CAS  PubMed  Google Scholar 

  • Kovacs, K., Holmes, T. P., Englin, J. E. & Alexander, J. (2011). The dynamic response of housing values to a forest invasive disease: Evidence from a sudden oak death infestation. Environmental and Resource Economics, 49 (3), 445–451.

  • Lamour K. (Ed.) (2013). Phytophthora: A global perspective. CABI Plant Protection Series; 2, Wallingford, UK.

  • Mislivec, P. B., & Bruce, V. R. (1976). Comparison of antibiotic-amended potato dextrose agar and acidified potato dextrose agar as growth substrates for fungi. Journal of the Association of Official Analytical Chemists, 59(3), 720–721.

    CAS  Google Scholar 

  • NWRI. (2012). Ultraviolet disinfection guidelines for drinking water and water reuse. In G. M. Vartanian (Ed.). Fountain Valley: National Water Research Institute.

    Google Scholar 

  • Orlikowski, L. B., Oszako, T., Trzewik, A., & Orlikowska, T. (2007). Occurrence of Phytophthora ramorum and other Phytophthora species in nurseries, trade stands, forests and water. Journal of Plant Protection Research, 47(4).

  • Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo, D. M., & Garbelotto, M. (2003). Sudden oak death: endengaring California and Oregon forest ecosystems. Frontiers in Ecology and the Environment, 1(4), 197–204.

  • Van der Linde, K., Lim, B. T., Rondeel, J. M. M., Antonissen, L. P. M. T., & de Jong, G. M. T. (1999). Improved bacteriological surveillance of haemodialysis fluids: A comparison between tryptic soy agar and Reasoner's 2A media. Nephrology Dialysis Transplantation, 14(10), 2433–2437.

    Article  Google Scholar 

  • Werres, S., Wagner, S., Brand, T., Kaminski, K., & Seipp, D. (2007). Survival of Phytophthora ramorum in recirculating irrigation water and subsequent infection of Rhododendron and viburnum. Plant Disease, 91(8), 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  • Widmer, T. L. (2009). Infective potential of sporangia and zoospores of Phytophthora ramorum. Plant Disease, 93(1), 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Younis, B. A. (2014). Demonstrating a vortex technology to disinfect wastewater with ultraviolet light. Report to California Energy Commission, CR 500-09-050 (also US patent publication number US 2016/0176727 A1, 2016).

Download references

Acknowledgements

This work was funded by the Sustainability Training and Research Program (SRTP), University of California – Davis, and by Diamond Developers, The Sustainable City - Dubai. We thank Dr. Suprya Shama (NORS-DUC) for technical assistance in the NORS-DUC lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassam A. Younis.

Ethics declarations

Ethical approval

The authors declare that this manuscript reports on original research that has not been published elsewhere. All the authors have read and approved this manuscript. All authors also declare that the data have not been manipulated. This manuscript does not contain any experiments with human participants or with animals.

Conflict of interest

The authors declare that they have no actual or potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younis, B.A., Mahoney, L., Schweigkofler, W. et al. Inactivation of plant pathogens in irrigation water runoff using a novel UV disinfection system. Eur J Plant Pathol 153, 907–914 (2019). https://doi.org/10.1007/s10658-018-01608-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01608-8

Keywords

Navigation