Skip to main content
Log in

Bradyrhizobium isolated from huanglongbing (HLB) affected citrus trees reacts positively with primers for Candidatus Liberibacter asiaticus

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bradyrhizobium sp., a slow-growing nitrogen-fixing symbiotic bacterium of legumes and common root endophyte of other plants, is closely related to Candidatus Liberibacter asiaticus (Las), the uncultured putative pathogen associated with citrus huanglongbing (HLB). In attempts to isolate Las on a low-nutrient medium that had been used for the isolation of several uncultured bacteria of the alpha subclass of proteobacteria, slow-growing Bradyrhizobium spp. were isolated and identified by sequencing of 16S rDNA. The individual isolates tested weakly positive (Ct = 31.2–36.0) with the USDA primers commonly used in qPCR assays for Las in foliar tissues. Direct DNA extracts from roots of HLB symptomatic trees that contained sequences of Bradyrhizobium sp. had Ct values ranging from 31.2 to 36.5; sequences of Las were not present in those samples. Potential cross-reaction between DNA of members of the Rhizobiales and sequences amplified by the Las primers were tested in silico with the Primer-BLAST tool in NCBI. Similar to Las, Bradyrhizobium generated predicted 16S rDNA amplicon sizes of 78–79 bp with the qPCR primers and of 1167-1172 bp with the conventional PCR primers. Bradyrhizobium sequences of 16S rDNA had 1–7 mismatches and only 1 mismatch at the 3′ end of qPCR and conventional PCR primers confirming potential cross-reactivity. As Bradyrhizobium is usually not found in foliage, the USDA qPCR primers can be safely used to check leaves for the presence of Las, but a threshold value of 31.0 is recommended for Las detection in roots. Other primers should be tested for potential cross-reaction with members of the Rhizobiales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albrecht, U., & Bowman, K. (2011). Tolerance of the trifoliate citrus hybrid US-897 (Citrus reticulata Blanco × Poncirus trifoliata L. Raf.) to huanglongbing. Hortscience, 46, 16–22.

    CAS  Google Scholar 

  • Barthelemy-Delaux, C., Marburger, D., Delaux, P. M., Conley, S., & Ané, J. M. (2014). Effect of drought on Bradyrhizobium japonicum populations in Midwest soils. Plant and Soil, 382, 165–173.

    Article  CAS  Google Scholar 

  • van Bruggen, A. H. C., & Francis, I. M. (2015). Case investigation and forensic evidence for a new plant disease: The case of lettuce corky root. Feature article. Plant Disease, 99, 300–309.

    Article  Google Scholar 

  • van Bruggen, A. H. C., & Semenov, A. M. (2000). In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15, 13–24.

    Article  Google Scholar 

  • van Bruggen, A. H. C., Jochimsen, K. N., & Brown, P. R. (1990). Rhizomonas suberifaciens gen nov, sp nov, the causal agent of corky root of lettuce. International Journal of Systematic Bacteriology, 40, 175–188.

    Article  Google Scholar 

  • van Bruggen, A.H.C., Jochimsen, K.N., Steinberger, E.M., Segers, P., & Gillis,M. (1993). The classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV. International Journal of Systematic Bacteriology 43, 1–7.

  • Canale, M. C., Tomaseto, A. F., Haddad, M. D. L., Coletta-Filho, H. D., & Lopes, J. S. (2017). Latency and persistence of Candidatus Liberibacter asiaticus in its psyllid vector, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Phytopathology, 107, 264–272.

    Article  PubMed  Google Scholar 

  • Cen, Y., Zhang, L., Xia, Y., Guo, J., Deng, X., Zhou, W., Sequeira, R., Gao, J., Wang, Z., Yue, J., & Gao, Y. (2012). Detection of 'Candidatus Liberibacter asiaticus' in Cacopsylla (Psylla) citrisuga (Hemiptera: Psyllidae). Florida Entomologist, 95, 304–311.

    Article  CAS  Google Scholar 

  • Chiyaka, C., Singer, B. H., Halbert, S. E., Morris, J. G., & van Bruggen, A. H. C. (2012). Modeling huanglongbing transmission within a citrus tree. Proceedings of the National Academy of Science, 109, 12213–12218.

    Article  CAS  Google Scholar 

  • Coy, M. R., Hoffmann, M., Kingdom Gibbard, H. N., Kuhns, E. H., Pelz-Stelinski, K. S., & Stelinski, L. L. (2014). Nested-quantitative PCR approach with improved sensitivity for the detection of low titer levels of Candidatus Liberibacter asiaticus in the Asian citrus psyllid, Diaphorina citri Kuwayama. Journal of Microbiological Methods, 102, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Das, A. K., Nerkar, S., Bawage, S., & Kumar, A. (2014). Current distribution of Huanglongbing (citrus greening disease) in India as diagnosed by real-time PCR. Journal of Phytopathology, 162, 402–406.

    Article  CAS  Google Scholar 

  • Davis, M. J., Mondal, S. N., Chen, H., Rogers, M. E., & Brlansky, R. H. (2008). Co-cultivation of ‘Candidatus Liberibacter asiaticus’ with actinobacteria from citrus with huanglongbing. Plant Disease, 92, 1547–1550.

    Article  Google Scholar 

  • Duan, Y., Zhou, L., Hall, D. G., Li, W., Doddapaneni, H., Lin, H., Liu, L., Vahling, C. M., Gabriel, D. W., Williams, K. P., Dickerman, A., Sun, Y., & Gottwald, T. (2009). Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus ' obtained through metagenomics. Molecular Plant-Microbe Interactions, 22, 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  • Fagen, J. R., Giongo, A., Brown, C. T., Davis-Richardson, A. G., Gano, K. A., & Triplett, E. W. (2012). Characterization of the relative abundance of the citrus pathogen Ca Liberibacter asiaticus in the microbiome of its insect vector, Diaphorina citri, using high throughput 16S rRNA sequencing. Open Microbiology Journal, 6, 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagen, J. R., Leonard, M. T., Coyle, J. F., McCullough, C. M., Davis-Richardson, A. G., Davis, M. J., & Triplett, E. W. (2014). Liberibacter crescens gen. nov., sp. nov., the first cultured member of the genus Liberibacter. International Journal of Systematic and Evolutionary Microbiology, 64, 2461–2466.

    Article  CAS  PubMed  Google Scholar 

  • Francis, I. M., Jochimsen, K. N., de Vos, P., & van Bruggen, A. H. C. (2014). Reclassification of rhizosphere bacteria including strains causing corky root of lettuce as Rhizorhapis suberifaciens gen. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov., Sphingopyxis sp., and Rhizorhabdus argenteus gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 64, 1340–1350.

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa, T., & Iwanami, T. (2012). Sensitive and robust detection of citrus greening (huanglongbing) bacterium “Candidatus Liberibacter asiaticus” by DNA amplification with new 16S rDNA-specific primers. Molecular and Cellular Probes, 26, 194–197.

    Article  CAS  PubMed  Google Scholar 

  • Gault, R. R., & Schwinghamer, E. A. (1993). Direct isolation of Bradyrhizobium japonicum from soil. Soil Biology Biochemistry, 25, 1161–1166.

    Article  Google Scholar 

  • Gomba, A., Chidamba, L., & Korsten, L. (2017). Effect of postharvest practices including degreening on citrus carpoplane microbial biomes. Journal of Applied Microbiology, 122, 1057–1070.

    Article  CAS  PubMed  Google Scholar 

  • Graham, J. H., Johnson, E. G., Gottwald, T. R., & Irey, M. S. (2013). Presymptomatic fibrous root decline in citrus trees caused by huanglongbing and potential interaction with Phytophthora spp. Plant Disease, 97, 1195–1199.

    Article  Google Scholar 

  • Hansen, A. K., Trumble, J. T., Stouthamer, R., & Paine, T. D. (2008). A new huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology, 74, 5862–5865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, A., Gomez, M., Giraud, J. J., & Revellin, C. (1996). Repeated sequence RSe is diagnostic for Bradyrhizobium japonicum and Bradyrhizobium elkanii. Biology and Fertility of Soils, 23, 15–19.

    Article  CAS  Google Scholar 

  • Hartung, J. S., Shao, J., & Kuykendall, L. D. (2011). Comparison of the ‘Ca. Liberibacter asiaticus’ genome adapted for an intracellular lifestyle with other members of the Rhizobiales. PLoS One, 6(8), e23289. https://doi.org/10.1371/journal.pone.0023289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, M. M., Ma, W., Zelenev, V. V., Khodzaeva, A. K., Kuznetsov, A. M., Semenov, A. M., Semenov, V. M., Blok, W., & van Bruggen, A. H. C. (2017). Short-term dynamics of greenhouse gas emissions and cultivable bacterial populations in response to induced and natural disturbances in organically and conventionally managed soils. Applied Soil Ecology, 119, 294–306.

    Article  Google Scholar 

  • Hu, S. J., van Bruggen, A. H. C., & Grunwald, N. J. (1999). Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Applied Soil Ecology, 13, 21–30.

    Article  Google Scholar 

  • Hungria, M., Menna, P., & Marçon Delamuta, J.R. (2015). Bradyrhizobium, the ancestor of all Rhizobia: Phylogeny of housekeeping and nitrogen-fixation genes. Ch. 18. In: de Bruijn, F.J. (ed.), Biological Nitrogen Fixation, Volume 1, First Edition. John Wiley & Sons, Inc. pp. 191–202.

  • Jagoueix, S., Bové, J. M., & Garnier, M. (1994). The phloem-limited bacterium of greening is a member of the alpha subdivision of the proteobacteria. International Journal of Systematic Bacteriology, 44, 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Joa, J. H., Weon, H. Y., Hyun, H. N., Jeun, Y. C., & Koh, S. W. (2014). Effect of long-term different fertilization on bacterial community structure and diversity in citrus orchard soil of volcanic ash. The Microbiological Society of Korea, 52, 995–1001.

    CAS  Google Scholar 

  • Johnson, E. G., Wu, J., Bright, D. B., & Graham, J. H. (2013). Association of ‘Candidatus Liberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant Pathology, 63, 290–298.

    Article  Google Scholar 

  • Keremane, M. L., Ramadugu, C., Rodriguez, E., Kubota, R., Shibata, S., Hall, D. G., Roose, M. L., Jenkins, D., & Lee, R. F. (2015). A rapid field detection system for citrus huanglongbing assiciated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Protection, 68, 41–48.

    Article  Google Scholar 

  • Kogenaru, S., Yan, Q., Riera, N., Roper, M. C., Deng, X., Ebert, T. A., Rogers, M., Irey, M. E., Pietersen, G., Rush, C. M., & Wang, N. (2014). Repertoire of novel sequence signatures for the detection of Candidatus Liberibacter asiaticus by quantitative real-time PCR. BMC Microbiology, 14, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunta, M., Viloria, Z., del Rio, H. S., & Louzada, E. S. (2014). Diverse DNA extraction methods and PCR primers for detection of Huanlongbing-associated bacteria from roots of ‘Valencia sweet orange on sour orange rootstock. Scientia Horticulturae, 178, 23–30.

    Article  CAS  Google Scholar 

  • Li, W., Hartung, J. S., & Levy, L. (2006). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus Huanglongbing. Journal of Microbiology Methods, 66, 104–115.

    Article  CAS  Google Scholar 

  • Liefting, L. W., Weir, B. S., Pennycook, S. R., & Clover, G. R. G. (2009). Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. International Journal of Systematic and Evolutionary Microbiology, 59, 2274–2276.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., Chen, C., Doddapanei, H., Duan, Y., Civerolo, E. L., Bai, X., & Zhao, X. (2010). A new diagnostic system for ultra-sensitive and specific detection and quantification of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing. Journal of Microbiology Methods, 81, 17–25.

    Article  CAS  Google Scholar 

  • Lin, C. Y., Tsai, C. H., Tien, H. J., Wu, M. L., Su, H. J., & Hung, T. H. (2017). Quantification and ecological study of ‘Candidatus Liberibacter asiaticus’ in citrus hosts, rootstocks and the Asian citrus psyllid. Plant Pathology doi:https://doi.org/10.1111/ppa.12692.

  • Maloney, P. E., van Bruggen, A. H. C., & Hu, S. (1997). Bacterial community structure in relation to the carbon environment in lettuce and tomato rhizospheres and in bulk soil. Microbial Ecology, 34, 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Marutani-Hert, M., Hunter, W. B., & Hall, D. G. (2009). Establishment of Asian citrus psyllid (Diaphorina citri) primary cultures. In Vitro Cellular and Developmental Biology - Animal, 45, 317–320.

    Article  CAS  PubMed  Google Scholar 

  • Menna, P., Barcellos, F. G., & Hungria, M. (2009). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of 16S rRNA, ITS, glnII, recA, atpD and dnaK genes. International Journal of Systematic and Evolutionary Microbiology, 59, 2934–2950.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, K., Zhou, L., Li, W., Shatters, R. G., Keremane, M., & Duan, Y. P. (2012). Improved real-time PCR detection of ‘Candidatus Liberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem repeats of its prophage genes. Molecular and Cellular Probes, 26, 90–98.

    Article  CAS  PubMed  Google Scholar 

  • Narouei-Khandan, H. A., Halbert, S. E., Worner, S. P., & van Bruggen, A. H. C. (2016). Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology, 144, 655–670.

    Article  Google Scholar 

  • Nunes da Rocha, U., Andreote, F. D., de Azevedo, J. L., van Elsas, J. D., & van Overbeek, L. S. (2010). Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere. Journal of Soils and Sediments, 10, 326–339.

    Article  Google Scholar 

  • Ohta, H., & Hattori, T. (1983). Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek, 49, 429–446.

    CAS  PubMed  Google Scholar 

  • Parker, J. K., Wisotsky, S. R., Johnson, E. G., Hijaz, F. M., Killiny, N., Hilf, M. E., & De La Fuente, L. (2014). Viability of ‘Candidatus Liberibacter asiaticus’ prolonged by addition of citrus juice to culture medium. Phytopathology, 104, 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Piromyou, P., Songwattana, P., Greetatorn, T., Okubo, T., Kakizaki, K. C., Prakamhang, J., Tittabutr, P., Boonkerd, N., Teaumroong, N., & Minamisawa, K. (2015). The type III secretion system (T3SS) is a determinant for rice-endophyte colonization by non-photosynthetic Bradyrhizobium. Microbes and Environments, 30, 291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Bahena, M. H., Chahbourne, R., Peix, A., & Velázquez, E. (2013). Reclassificaiton of Agronomnas oligotrophica into the genus Bradyrhizobium as Bradyrhizobium oligotrophicum comb. nov. International Journal of Systematic and Evolutionary Microbiology, 63, 1013–1016.

    Article  PubMed  Google Scholar 

  • Rouws, L. F., Leite, J., & Matos, G. F. (2014). Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environmental Microbiology Reports, 6, 354–363.

    Article  CAS  PubMed  Google Scholar 

  • Sameshima, R., Isawa, T., Sadowsky, M. J., Hamada, T., Kasai, H., Shutsrirung, A., Mitsui, H., & Minamisawa, K. (2003). Phylogeny and distribution of extra-slow-growing Bradyrhizobium japonicum harboring high copy numbers of RSα, RSα and IS1631. FEMS Microbiology and Ecology, 44, 191–202.

    Article  CAS  Google Scholar 

  • Sechler, A., Schuenzel, E. L., Cooke, P., Donnua, S., Thaveechai, N., Postnikova, E., Stone, A. L., Schneider, W. L., Damsteegt, V. D., & Schaad, N. W. (2009). Cultivation of ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. Africanus’, and ‘Ca. L. Americanus’ associated with huanglongbing. Phytopathology, 99, 480–486.

    Article  CAS  PubMed  Google Scholar 

  • Senechkin, I. V., Speksnijder, A. G. C. L., Semenov, A. M., van Bruggen, A. H. C., & van Overbeek, L. S. (2010). Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments. Microbial Ecology, 60, 829–839.

    Article  PubMed  Google Scholar 

  • Shen, W., Cevallos-Cevallos, J. M., da Rocha, U. N., Arevalo, H. A., Stansly, P. A., Roberts, P. D., & van Bruggen, A. H. C. (2013a). Relation between plant nutrition, hormones, insecticide applications, bacterial endophytes, and Candidatus Liberibacter Ct values in citrus trees infected with Huanglongbing. European Journal of Plant Pathology, 137, 727–742.

    Article  CAS  Google Scholar 

  • Shen, W., Halbert, S. E., Dickstein, E., Manjunath, K. L., Shimwela, M. M., & van Bruggen, A. H. C. (2013b). Occurrence and in-grove distribution of citrus Huanglongbing in north Central Florida. Journal of Plant Pathology, 95, 361–371.

    Google Scholar 

  • Shimwela, M. M., Narouei-Khandan, H. A., Halbert, S. E., Keremane, M. L., Minsavage, G. V., Timilsina, S., Massawe, D. P., Jones, J. B., & van Bruggen, A. H. C. (2016). First occurrence of Diaphorina citri in East Africa, characterization of the Ca. Liberibacter species causing huanglongbing (HLB) in Tanzania, and potential further spread of D. citri and HLB in Africa and Europe. European Journal of Plant Pathology, 146, 349–368.

    Article  Google Scholar 

  • Shin, K., Ascunce, M. S., Narouei-Khandan, H. A., Sun, X., Jones, D., Kolawole, O. O., Goss, E. M., & van Bruggen, A. H. C. (2016). Effects and side effects of penicillin injection in huanglongbing affected grapefruit trees. Crop Protection, 90, 106–116.

    Article  CAS  Google Scholar 

  • Tan, Z., Hurek, T., Vinuesa, P., Müller, P., Ladha, J. K., & Reinhold-Hurek, B. (2001). Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Applied and Environmental Microbiology, 67, 3655–3664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira, D. C., Saillard, C., Couture, C., Martins, E. C., Wulff, N. A., Eveillard-Jagoueix, S., Yamamoto, P. T., Ayres, A. J., & Bové, J. M. (2008). Distribution and quantification of Candidatus Liberibacter americanus, agent of huanglongbnig disease of citrus in Sao Paulo state, Brasil, in leaves of an affected sweet orange tree as determined by PCR. Molecular and Cellular Probes, 22, 139–150.

    Article  CAS  PubMed  Google Scholar 

  • Trivedi, P., Sagaram, U. S., Kim, J. S., Brlansky, R. H., Rogers, M. E., Stelinski, L. L., Oswalt, C., & Wang, N. (2009). Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA). European Journal of Plant Pathology, 124, 553–563.

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture. (2012). New Pest Response Guidelines Citrus Greening Disease. https://www.aphis.usda.gov/plant_health/plant_pest_info/citrus_greening/downloads/pdf_files/cg-nprg.pdf. Accessed 05 Oct 2017.

  • Van Bruggen, A. H. C., He, M. M., Zelenev, V. V., Semenov, V. M., Semenov, A. M., Semenova, E. V., Kuznetsova, T. V., Khodzaeva, A. K., Kuznetsov, A. M., & Semenov, M. V. (2017). Relationships between greenhouse gas emissions and cultivable bacterial populations in conventional, organic and long-term grass plots as affected by environmental variables and disturbances. Soil Biology and Biochemistry, 114, 145–159.

    Article  Google Scholar 

  • Van Insberghe, D., Maas, K. R., Cardenas, E., Strachan, C. R., Hallam, S. J., & Mohn, W. W. (2015). Non-symbiotic Bradyrhizobium ecotypes dominate north American forest soils. ISME Journal, 9, 2435–2441. https://doi.org/10.1038/ismej.2015.54.

    Article  Google Scholar 

  • Wulff, N. A., Zhang, S., Setubal, J. C., Almeida, N. F., Martins, E. C., Harakava, R., Kumar, D., Rangel, L. T., Foissac, X., Bove, J., & Gabriel, D. W. (2014). The complete genome sequence of Candidatus Liberibacter americanus, associated with citrus Huanglongbing. Molecular Plant-Microbe Interactions, 27, 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Powell, C. A., Duan, Y., Shatters, R. G., Lin, Y., & Zhang, M. (2016). Mitigating citrus huanglongbing via effective application of antimicrobial compounds and thermotherapy. Crop Protection, 84, 150–158.

    Article  CAS  Google Scholar 

  • Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran, H. H. (1999). Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63, 968–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelenev, V. V., van Bruggen, A. H. C., Leffelaar, P. A., Bloem, J., & Semenov, A. M. (2006). Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: The simulation model ‘BACWAVE-WEB. Soil Biology and Biochemistry, 38, 1690–1711.

    Article  CAS  Google Scholar 

  • Zhang, M. Q., Duan, Y. P., Zhou, L. J., Turechek, W. W., Stover, E., & Powell, C. A. (2010). Screening molecules for control of citrus huanglongbing using an optimized regeneration system for ‘Candidatus Liberibacter asiaticus’-infected periwinkle (Catharanthus roseus) cuttings. Phytopathology, 100, 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Z., Xu, M., Bao, M., Wu, F., Chen, J., & Deng, X. (2016). Unusual five copies and dual forms of nrdB in “Candidatus Liberibacter asiaticus”: Biological implications and PCR detection. Nature Scientific Reports, 6, 39020. https://doi.org/10.1038/srep39020.

    Article  CAS  Google Scholar 

  • Zhou, L., Powell, C. A., Hoffman, M. T., Li, W., Fan, G., Liu, B., Lin, H., & Duan, Y. (2011). Diversity and plasticity of the intracellular plant pathogen and insect symbiont “Candidatus Liberibacter asiaticus” as revealed by hypervariable prophage genes with intragenic tandem repeats. Applied and Environmental Microbiology, 77, 6663–6673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded primarily by the Esther B. O’Keeffe Foundation in Deerfield Beach, Florida. We are grateful to Brian O’Keeffe who noticed our work on HLB in the Proceedings of the National Academy of Sciences and decided to fund our HLB research. Additional funding was provided by the Florida Department of Agriculture and Consumer Services (HLB-Mac 14-8130-0469-CA). We thank Dr. Greg Hodges and Dr. Tim Schubert of the Division of Plant Industry for providing these funds to us. We are grateful to Ben McLean III, vice-president of Uncle Matt’s Organic in Clermont, FL, for providing citrus samples from the organically and conventionally managed groves. We thank Dr. Marina S. Ascunce for providing bacterial colony mixtures and DNA samples from Fort Meade and also thank Dr. Miaomaio He for help with the processing of citrus samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariena H. C. van Bruggen.

Ethics declarations

Conflict of interest

There are no conflicts of interest for either of the authors.

Ethical approval

No human participants or animals were involved in this research. Both authors fully agree with the paper submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, K., van Bruggen, A.H.C. Bradyrhizobium isolated from huanglongbing (HLB) affected citrus trees reacts positively with primers for Candidatus Liberibacter asiaticus. Eur J Plant Pathol 151, 291–306 (2018). https://doi.org/10.1007/s10658-017-1372-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1372-9

Keywords

Navigation