Skip to main content
Log in

Effect of boron on mycelial growth, sporangiogenesis and zoosporogenesis of Phytophthora nicotianae and the possible inhibitory mechanisms

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora nicotianae is one of the most important soil-borne plant pathogens. Sporangia and zoospores of P. nicotianae are responsible for primary infection and disease dissemination. The disease caused by P. nicotianae was difficult to control by fungicide. Boron, an essential plant micronutrient, was found to have a direct effect on other pathogens. In this paper, the effects of B on the growth, antioxidant system and gene differential expression of P. nicotianae were tested. The results showed that 0.1 mM B could dramatically decrease the sporangiogenesis and zoosporogenesis of P. nicotianae. Mycelial growth of P. nicotianae was significantly inhibited when the concentration of B reached 8 mM. A high-quality differential expression sequence csn4 was obtained by gene differential expression analysis. Under the treated of B, csn4 expression was inhibited, activity of superoxide dismutase (SOD) and catalase (CAT) significantly decreased and the malondialdehyde (MDA) content notably increased compared to control. It is suggested that B could serve as a potential fungicide for the control of plant disease caused by P. nicotianae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Aguirre, J., Ríos-Momberg, M., Hewitt, D., & Hansberg, W. (2005). Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology, 13, 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Bittner, R. J., & Mila, A. L. (2016). Effects of oxathiapiprolin on Phytophthora nicotianae, the causal agent of black shank of tobacco. Crop Protection, 81, 57–64.

    Article  CAS  Google Scholar 

  • Blaya, J., Lloret, E., Santísima-Trinidad, A. B., Ros, M., & Pascual, J. A. (2015). Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Management Science, 72, 747–753.

    Article  PubMed  Google Scholar 

  • Brown, P. H., & Hu, H. (1996). Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species. Annals of Botany, 77, 497–505.

    Article  CAS  Google Scholar 

  • Cervilla, L. M., Blasco, B., Rios, J. J., Romero, L., & Ruiz, J. M. (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100, 747–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohmann, E. M., Kuhnle, C., & Schwechheimer, C. (2005). Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. The Plant Cell, 17, 1967–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, 28, 33–46.

    Article  CAS  Google Scholar 

  • Du, Z., & Bramlage, W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 40, 1566–1570.

    Article  CAS  Google Scholar 

  • Falcón-Rodríguez, A. B., Costales, D., Cabrera, J. C., & Martínez-Téllez, M. A. (2011). Chitosan physico-chemical properties modulate defense responses and resistance in tobacco plants against the oomycete Phytophthora nicotianae. Pesticide Biochemistry and Physiology, 100, 221–228.

    Article  Google Scholar 

  • Frenkel, O., Yermiyahu, U., Forbes, G. A., Fry, W. E., & Shtienberg, D. (2010). Restriction of potato and tomato late blight development by sub-phytotoxic concentrations of boron. Plant Pathology, 59, 626–633.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, C. Y., Ryu, Y. S., Chung, M. S., Kim, K. D., Park, S. S., et al. (2004). Thioredoxin modulates activator protein 1 (AP-1) activity and p27Kip1 degradation through direct interaction with Jab1. Oncogene, 23, 8868–8875.

    Article  CAS  PubMed  Google Scholar 

  • Kong, P., Hong, C., Jeffers, S. N., & Richardson, P. A. (2003). A species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water. Phytopathology, 93, 822–831.

    Article  CAS  PubMed  Google Scholar 

  • Licursi, V., Salvi, C., De Cesare, V., Rinaldi, T., Mattei, B., et al. (2014). The COP9 signalosome is involved in the regulation of lipid metabolism and of transition metals uptake in Saccharomyces cerevisiae. FEBS Journal, 281, 175–190.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Jiang, W., Zhang, L., & Lufang, L. I. (2000). Effects of boron ions on root growth and cell division of broadbean (vicia faba l.) Israel Journal of Plant Sciences, 48, 47–51.

    Article  CAS  Google Scholar 

  • Masago, H., Yoshikawa, M., & Nakanishi, N. (1977). Selective inhibition of Pythium spp. on a medium for direct isolation of Phytophthora spp. from soils and plants. Phytopatology, 67, 425–428.

    Article  CAS  Google Scholar 

  • Mondol, M. A. M., Surovy, M. Z., Islam, M. T., Schüffler, A., & Laatsch, H. (2015). Macrocyclic trichothecenes from Myrothecium roridum strain M10 with motility inhibitory and zoosporicidal activities against Phytophthora nicotianae. Journal of Agricultural and Food Chemistry, 63, 8777–8878.

    Article  CAS  PubMed  Google Scholar 

  • Qin, G., Tian, S., Chan, Z., & Li, B. (2007). Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum. Molecular & Cellular Proteomics, 6, 425–438.

    Article  CAS  Google Scholar 

  • Qin, G., Zong, Y., Chen, Q., Hua, D., & Tian, S. (2010). Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. International Journal of Food Microbiology, 138, 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Rao, K. M., & Sresty, T. V. S. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plat Science, 157, 113–128.

    Article  Google Scholar 

  • Rolshausen, P. E., & Gubler, W. D. (2005). Use of boron for the control of Eutypa dieback of grapevines. Plant Disease, 89, 734–738.

    Article  CAS  Google Scholar 

  • Ryden, P., Sugimoto-Shirasu, K., Smith, A. C., Findlay, K., Reiter, W. D., & McCann, M. C. (2003). Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiology, 132, 1033–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh, K., Togashi, K., Arie, T., & Teraoka, T. (2006). A simple method for a mini-preparation of fungal DNA. Journal of General Plant Pahology, 72, 348–350.

    Article  CAS  Google Scholar 

  • Thomidis, T., & Exadaktylou, E. (2010). Effect of boron on the development of brown rot (Monilinia laxa) on peaches. Crop Protection, 29, 52–576.

    Google Scholar 

  • Tooley, P. W., Browning, M., & Leighty, R. M. (2013). Inoculum density relationships for infection of some eastern us forest species by phytophthora ramorum. Journal of Phytopathology, 161, 595–603.

    Article  Google Scholar 

  • Voxeur, A., & Fry, S. C. (2014). Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. Plant Journal, 79, 139–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Hu, Q., Chen, H., Zhou, Z., Li, W., Wang, Y., et al. (2010). Role of individual subunits of the Neurospora crassa CSN complex in regulation of deneddylation and stability of cullin proteins. PLoS Genetics, 6, 267–276.

    Google Scholar 

  • Warington, K. (1923). The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany, 37, 629–672.

    Article  Google Scholar 

  • Yulia, K., Carmela, P. M., Rocco, R., et al. (2016). Effect of boron and zinc application on HXK1 and MAKR6 gene expression in strawberry. Emirates Journal of Food and Agriculture, 28, 317–325.

    Article  Google Scholar 

  • Zhao, W. J., Han, J. R., & Long, D. D. (2015). Effect of copper-induced oxidative stress on sclerotial differentiation, endogenous antioxidant contents, and antioxidative enzyme activities of Penicillium thomii PT95. Annals of Microbiology, 65, 1505–1514.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Developmental Program of China (2016YFC0502303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Yang, S., Wang, H. et al. Effect of boron on mycelial growth, sporangiogenesis and zoosporogenesis of Phytophthora nicotianae and the possible inhibitory mechanisms. Eur J Plant Pathol 149, 945–952 (2017). https://doi.org/10.1007/s10658-017-1244-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1244-3

Keywords

Navigation