Skip to main content
Log in

Potato spindle tuber viroid: alternative host reservoirs and strain found in a remote subtropical irrigation area

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

During 2007–2012, Potato spindle tuber viroid (PSTVd) was detected in volunteer cultivated, wild and native plants during studies to determine whether Pospiviroids occur within the isolated, sub-tropical, Gascoyne Horticultural District (GHD) in central coastal Western Australia (WA). PSTVd was detected infecting volunteer crop plants of tomato, pepper and chilli; introduced weed species Solanum nigrum (blackberry nightshade), Datura leichhardtii (thornapple) and Nicandra physalodes (apple-of-Peru) (Solanaceae), and Conyza bonariensis (flaxleaf fleabane) (Asteraceae); and Australian native species Atriplex semilunaris (annual saltbush), Rhagodia eremaea (thorny saltbush) (Chenopodiaceae), and Streptoglossa sp. (Asteraceae). PSTVd was also detected infecting Physalis angulata (wild gooseberry) in the Ord River Irrigation Area (ORIA), Kimberley region in north-west WA. Comparison of sequences from the three complete and 18 partial RNA nucleotide sequences obtained from 20 GHD and one ORIA isolates with those of published sequences showed that their highest nucleotide sequence identities were to isolate AY962324 belonging to the Chittering strain from south-west WA. On phylogenetic analysis, the three completely sequenced GHD PSTVd isolates grouped within a cluster of isolates from tomato and P. peruviana. These results show that a naturally occurring PSTVd inoculum reservoir is present in the GHD. This reservoir explains the occurrence of repeated PSTVd infections in different years in field crops of tomato, pepper and chilli growing in its market gardens and small farms. These findings have implications concerning PSTVd spread in intensive solanaceous crop field production systems in other subtropical regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul, G. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Behjatnia, S. A. A., Dry, I. B., Krake, L. R., Conde, B. D., Connelly, M. I., Randles, J. W., & Rezaian, M. A. (1996). New potato spindle tuber viroid and tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology, 86, 880–886.

    Article  CAS  Google Scholar 

  • Benson, A. P., & Singh, R. P. (1964). Seed transmission of potato spindle tuber virus in tomato. American Potato Journal, 41, 294.

    Google Scholar 

  • Cartwright, D. N. (1984). Potato spindle tuber viroid survey - South Australia. Australasian Plant Pathology, 13, 4–5.

    Article  Google Scholar 

  • CIP (1991). International Potato Center, Annual Report, CIP 1991. Lima, Peru. 258 p

  • Constable, F., & Moran, J. (1996). PCR protocols for the detection of chrysanthemum stunt viroid and potato spindle tuber viroid. Final report for the horticultural research and development corporation project no. PT 410. Victoria, Australia: Department of Natural Resources and Environment.

    Google Scholar 

  • EFSA Panel on Plant Health (2011). Scientific opinion on the assessment of the risk of solanaceous pospiviroids for the EU territory and the identification and evaluation of risk management options. EFSA Journal, 9 (8) 2230. doi:10.2903/j.efsa.2011.2330. (Available online: www.efsa.europa.eu/efsajournal.htm)

  • Elliott, D. R., Alexander, B. J. R., Smales, T. E., Zang, Z. & Clover, G. R. G. (2001). Infection of glasshouse tomatoes by Potato spindle tuber viroid in New Zealand. In Proceedings of 13th Biennial Australasian Plant Pathology Conference, Cairns, Queensland, p. 224. (Abstr.)

  • Faggioli., F., Luigi, M., Sveikauskas, V., Olivier, T., Marn, M. V. et al. (10 authors) (2015). An assessment of the seed transmission rate of four pospiviroid species through seed. European Journal of Plant Pathology, 143, 613–617.

  • Florabase (2013a), Physalis angulata: wild gooseberry. Perth, Australia: Western Australian Hebarium, Department of Parks and Wildlife. http://florabase.dpaw.wa.gov.au/browse/profile/20652

  • Florabase (2013b). Physalis peruviana: cape gooseberry. Perth, Australia: Western Australian Hebarium, Department of Parks and Wildlife. http://florabase.dpaw.wa.gov.au/browse/profile/6983

    Google Scholar 

  • Flores, R., Hernández, C., Martínez de Alba, A. E., Daròs, J. A., & Di Serio, F. (2005). Viroids and viroid-host interactions. Annual Review of Phytopathology, 43, 117–139.

    Article  CAS  PubMed  Google Scholar 

  • Hadidi, A., Flores, R., Randles, J. W., & Semancik, J. S. (Eds.) (2003). Viroids. Collingwood, Australia: CSIRO Publications.

    Google Scholar 

  • Hailstones, D. L., Tesoriero, L. A., Terras, M. A., & Dephoff, C. (2003). Detection and eradication of Potato spindle tuber viroid in tomatoes in commercial production in New South Wales, Australia. Australasian Plant Pathology, 32, 317–318.

    Article  Google Scholar 

  • Hunter, D. E., Darling, D. H., & Beale, W. L. (1969). Seed transmission of potato spindle tuber virus. American Potato Journal, 46, 247–250.

    Article  Google Scholar 

  • Harris, P. S., & Browning, I. A. (1980). The effects of temperature and light on the symptom expression and viroid concentration in tomato of a severe strain of potato spindle tuber viroid. Potato Research, 23, 85–93.

    Article  Google Scholar 

  • Ling, D. R., Li, R, Panthee, D. R. & Gardner, R. G. (2013). First report of Potato spindle tuber viroid naturally infecting greenhouse tomatoes in North Carolina. Plant Disease, 97, 148.

  • Mackie, A. E., McKirdy, S. J., Rodoni, B., & Kumar, S. (2002). Potato spindle tuber viroid eradicated in Western Australia. Australasian Plant Pathology, 31, 311–312.

    Article  Google Scholar 

  • Mackie, A. E., Coutts, B. A., Barbetti, M. J., Rodoni, B. C., McKirdy, S. J., & Jones, R. A. C. (2015). Potato spindle tuber viroid: stability on common surfaces and inactivation with disinfectants. Plant Disease, 99, 770–775.

    Article  Google Scholar 

  • Manzer, F. E., & Merriam, D. (1961). Field transmission of potato spindle tuber virus and virus X by cultivating and hilling equipment. American Potato Journal, 38, 346–352.

    Article  Google Scholar 

  • Mehle, N., Gutiérrez-Aguirre, I., Prezelj, N., Delić, D., Vidic, U., & Ravnikar, M. (2014). Survival and transmission of Potato virus Y, Pepino mosaic virus, and Potato spindle tuber viroid in water. Applied Environmental Microbiology, 80, 1455–1462.

  • Morris, T. J., & Smith, E. M. (1977). Potato spindle tuber disease: procedures for the detection of viroid RNA and certification of disease-free potato tubers. Phytopathology, 67, 145–150.

    Article  CAS  Google Scholar 

  • Mumford, R. A., Jarvis, B., & Skelton, A. (2004). The first report of Potato spindle tuber viroid (PSTVd) in commercial tomatoes in the UK. Plant Pathology, 53, 242.

    Article  Google Scholar 

  • NSW DPI (2013). Potato spindle tuber viroid (PSTVd) in tomatoes. New South Wales, Australia: NSW Department of Primary Industries. http://www.dpi.nsw.gov.au/biosecurity/plant/pstvd-tomatoes

    Google Scholar 

  • O’Neill, T. M., & Mumford, R. A. (2006). Potato spindle tuber viroid in tomato and new viroid reports. In Factsheet 09/06 Australian horticultural development council. Australian: Department for Environment, Food and Rural Affairs.

  • Owens, R. A., Flores, R., di Serio, F., Li, S. F., Pallás, V., Randles, J. W., Sano, T., & Vidalakis, G. (2012). Pospiviroid. In M. Q. Andrew, A. M. Q. King, M. J. Adams, E. B. Carstens, & E. J. Lefkowitz (Eds.), Virus taxonomy (pp. 1229–1230). Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier-Academic Press.

    Google Scholar 

  • Querci, M., Owens, R. A., Vargas, C., & Salazar, L. F. (1995). Detection of potato spindle tuber viroid in avocado growing in Peru. Plant Disease, 79, 196–202.

    Article  CAS  Google Scholar 

  • Randles, J. W., Rezaian, M. A., Hanold, D., Harding, R. M., Skrzeczkowski, J., & Whattam, M. (2003). Viroids in Australasia. In J. W. Randles, & J. S. Semancik (Eds.), Hadidi, A., Flores, R (pp. 279–282). Collingwood, Australia: Viroids. CSIRO Publishing.

  • Schwinghamer, M. W., Scott, G. R., Mallinson, F. K., Tesoriero, L. A. & Morrison, W. L. (1983). Potato spindle tuber viroid: an extensive infection in the New South Wales potato breeding programme. In Proceedings of the 4th International Plant Pathology Conference, Melbourne, Australia, p. 122. (Abstr.)

  • Singh, R. P. (1970). Seed transmission of potato spindle tuber virus in tomato and potato. American Potato Journal, 47, 225.

    Article  Google Scholar 

  • Singh, R. P. (1973). Experimental host range of the potato spindle tuber ‘virus’. American Potato Journal, 50, 111–123.

    Article  Google Scholar 

  • Tabler, M., & Tsagris, M. (2004). Viroids: petite RNA pathogens with distinguished talents. Trends in Plant Science, 9, 339–348.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetic analysis using maximum liklihood, evolutionary distance and parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

  • van Brunschot, S. L., Verhoeven, J., T, J., Persley, D. M., Geering, A. D. W., Drenth, A., & Thomas, J. E. (2014a). An outbreak of Potato spindle tuber viroid in tomato is linked to imported seed. European Journal of Plant Pathology, 139, 1–7.

  • van Brunschot, S. L., Persley, D. M., Roberts, A. & Thomas, J. E. (2014b). First report of pospiviroids infecting ornamental plants in Australia: Potato spindle tuber viroid in Solanum laxum (synonym S. jasminoides) and Citrus exocortis viroid in Petunia spp. New Disease Reports 29, 3. http://dx.doi.org/10.5197/j.2044-0588.2014.029.00

  • Verhoeven, J. T. J., Jansen, C. C. C., Willemen, T. M., Kox, L. F. L., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Botermans, M., Roenhorst, J. W., Westerhof, J., & Meekes, E. T. M. (2009). First report of Potato spindle tuber viroid in cape gooseberry (Physalis peruviana) from Turkey and Germany. Plant Disease, 93, 316.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Botermans, M., & Roenhorst, J. W. (2010a). Epidemiological evidence that vegetatively propagated, solanaceous plant species act as sources of Potato spindle tuber viroid inoculum for tomato. Plant Pathology, 59, 3–12.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Huner, L., Virscek, M. M., Mavric Plesko, I., & Roenhorst, J. W. (2010b). Mechanical transmission of Potato spindle tuber viroid between plants of Brugmansia suaveolens, Solanum jasminoides and potatoes and tomatoes. European Journal of Plant Pathology, 128, 417–421.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C. & Roenhorst, J. W. (2008). First report of pospiviroids infecting ornamentals in The Netherlands: Citrus exocortis viroid in Verbena sp., Potato spindle tuber viroid in Brugmansia suaveolens and Solanum jasminoides, and Tomato apical stunt viroid in Cestrum sp. Plant Pathology, 57, 399.

  • Ward, L. I., Tang, J., Veerakone, S., Quinn, B. D., Harper, S. J., Delmiglio, C., & Clover, G. R. G. (2010). First report of Potato spindle tuber viroid in cape gooseberry (Physalis peruviana) in New Zealand. Plant Disease, 94, 479.

    Article  Google Scholar 

  • Zheng, L., Rodoni, B., Gibbs, A., & Gibbs, M. (2010). A novel pair of universal primers for the detection of potyviruses. Plant Pathology, 59, 211–220.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author acknowledges financial assistance provided by a Scholarship and operating support from the Co-operative Research Centre for Plant Biosecurity and from Horticulture Australia Ltd. The Department of Agriculture and Food Western Australia also provided operational support. We thank Stuart Vincent, Robert Creasy and Bill Piasini for assisting with plant propagation, and other routine glasshouse activities; Joanne Mackie and Cuiping Wang for assisting with testing and sequencing; and Monica Kehoe for assistance with phylogenetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. C. Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackie, A.E., Rodoni, B.C., Barbetti, M.J. et al. Potato spindle tuber viroid: alternative host reservoirs and strain found in a remote subtropical irrigation area. Eur J Plant Pathol 145, 433–446 (2016). https://doi.org/10.1007/s10658-016-0857-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0857-2

Keywords

Navigation