Skip to main content
Log in

Morphological and genotypic features of Xanthomonas arboricola pv. juglandis populations from walnut groves in Romagna region, Italy

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Seventy-seven Xanthomonas arboricola pv. juglandis isolates, originating from a small region (Romagna, Italy) within 4 years, were phenotypically typed, in order to study their population features. Assessment of phenotypes resulted in the identification of three different groups of morphotypes, in the assessment of different virulence on walnut fruitlets, and in the evidence that all isolates were able to grow on Mannitol-glutamate-yeast agar containing 50 ppm of copper sulphate. Moreover, several isolates showed to be highly copper resistant in vitro, up to 500 ppm. Forty-one isolates, selected considering year/origin of plant material and phenotypic features, were molecularly studied by rep-PCR fingerprinting using BOXA1R primer. These strains showed a clear intra-pathovar variation by the presence of eight different haplotypes. Twenty isolates, representative of different BOX profile, were studied by means of variable number of tandem repeats (VNTR) on the locus TR5b. Such analysis highlighted five different sequence types. Eight polymorphic strains on this flanking region isolated in between 2007 and 20 and one isolated in 2010 were subject to multilocus sequence analysis (MLSA) using atpD, dnaK, efP, fyuA, glnA, gyrB, and rpoD housekeeping genes. A diversity level in Italian isolates was highlighted in the same range as in reference strains from a worldwide origin. Finally, the gene cluster copLAB presence was confirmed for all isolates. In this study, the high phenotype and genotype variability inside Xanthomonas arboricola pv. juglandis, was explained by the different origin of the propagation material. Information provided in this study on an Italian Xanthomonas arboricola pv. juglandis collection allows a better understanding of the walnut bacterial blight epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adaskaveg, J. E., Försters, H., Thompson, D., Driever, G., Connell, J., Buchner, R., Prichard, T., Grant, J. & Wade, L. (2008). Epidemiology and management of walnut blight. In California Walnut Board (Ed.), Walnut research report 2008 (pp. 181–192).

  • Aletà, N., Ninot, A., Moragrega, C., Llorente, I., & Montesinos, E. (2001). Blight sensitivity of Spanish selections of Juglans regia. Acta Horticulturae, 544, 353–362.

    Article  Google Scholar 

  • Anonymous. (2014). Kasugamycin, pesticide tolerance. A rule by the Environmental Protection Agency on 08/29/2014. In: Federal Register. The Daily Journal of the United States Government, 79(N. 168), 51492–51497.

    Google Scholar 

  • Ark, P. A. (1944). Studies on bacterial canker of tomato. Phytopathology, 34, 394–400.

    Google Scholar 

  • Ayers, S. H., Rupp, P., & Johnson, W. (1957). Cited by: U. S. Dept. Agri. N°782. In Manual of microbiological methods, 54 (5th ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Barionovi, D., & Scortichini, M. (2008). Integron variability in Xanthomonas arboricola pv. juglandis and pv. pruni strains. FEMS Microbiology Letters, 288, 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Basim, H., Minsavage, G. V., Stall, R. E., Wang, J. F., Shanker, S., & Jones, J. B. (2005). Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 71, 8284–8291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behlau, F., Canteros, B. I., Jones, J. B., & Graham, H. J. (2012). Copper resistance genes from different xanthomonads and citrus epiphytic bacteria confer resistance to Xanthomonas citri subsp. citri. European Journal of Plant Pathology, 133, 949–963.

    Article  CAS  Google Scholar 

  • Behlau, F., Hong, J. C., Jones, J. B., & Graham, J. H. (2013). Evidence for acquisition of copper resistance genes from different sources in citrus associated xanthomonads. Phytopathology, 103, 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Belisario, A. (1996). Le principali malattie del noce in Italia. Informatore Fitopatologico, 11, 20–25.

    Google Scholar 

  • Bender, C. L., Malvick, D. K., Conway, K. E., George, S., & Pratt, P. (1990). Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 56, 170–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani, G. (1952). Studies on lysogenesis. I. The mode of phage liberation by lysogenic escherichia coli. Journal of Bacteriology, 62, 293–300.

    Google Scholar 

  • Buchner, R. P., Olson, W. H., & Adaskaveg, J. E. (2001). Walnut blight (Xanthomonas campestris pv. juglandis) contro investigations in northern California, USA. Acta Horticulturae, 544, 369–378.

    Article  CAS  Google Scholar 

  • Buchner, R. P., Lindow, S. E, Adaskaveg, J. E., Koutsoukis, C. K. G. & Koutsoukis, R. (2013). Walnut Blight management using Xanthomonas arboricola pv. juglandis: dormant bud population sampling. California Walnut Board, Walnut disease report 2013, (pp. 307–321). http://walnutresearch.ucdavis.edu. Accessed 12 January 2015.

  • Burdon, J. J. (1993). Genetic variation in pathogen populations and its implications for adaptation to host resistance. In T. Jacobs & J. E. Parlevliet (Eds.), Durability of disease resistance (pp. 41–56). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Cesbron, S., Pothier, J., Gironde, S., Jacques, M. A., & Manceau, C. (2014). Development of multilocus variable-number tandem repeat analysis (MLVA) for Xanthomonas arboricola pathovars. Journal of Microbiological Methods, 100, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W. P., & Kuo, T. T. (1993). A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Research, 21, 2260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooksey, D. A., & Azad, H. R. (1992). Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads. Applied and Environmental Microbiology, 58, 274–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooksey, D. A., Azad, H. R., Cha, J. S., & Lim, C. K. (1990). Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Applied and Environmental Microbiology, 56, 431–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dye, D. W. (1962). The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. New Zealand Journal of Science, 5, 393–416.

    Google Scholar 

  • Ferraris, T. (1927) Trattato di patologia e terapia vegetale. In: Ed. Hoepli Vol. II (pp.1019–20). Milano.

  • Fischer-Le Saux, M., Bonneau, S., Essakhi, S., Manceau, C., & Jacques, M. A. (2015). Aggressive emerging pathovars of Xanthomonas arboricola represent widespread epidemic clones that are distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Applied and Environmental Microbiology. doi:10.1128/AEM.00050-15.

    Google Scholar 

  • Frutos, D. (2010). Bacterial diseases of walnut and hazelnut and genetic resources. Journal of Plant Pathology, 92, 79–85.

    Google Scholar 

  • Gardan, L., Brault, T., & Germain, E. (1993). Copper resistance of Xanthomonas arboricola pv. juglandis in French walnut orchards and its association with conjugative plasmids. Acta Horticulturae, 311, 259–265.

    Article  Google Scholar 

  • Ginibre, T., & Prunet, J. P. (2001). Chemical control of bacterial blight of walnut, three years of results. Acta Horticulturae, 544, 409–412.

    Article  CAS  Google Scholar 

  • Gironde, S., & Manceau, C. (2012). Housekeeping gene sequencing and multilocus variable number tandem-repeat analysis to identify subpopulations within Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato that correlate with host specificity. Applied and Environmental Microbiology, 78, 3266–3279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golmohammadi, M. (1999). Evaluation of the occurrence of walnut bacterial blight in central and northern provinces of Iran. MSc thesis, 80 pp. Tarbiat Modarres University of Tehran, Iran.

  • Hajri, A., Meyer, D., Delort, F., Guillaume, J., Brin, C., & Manceau, C. (2010). Identification of a genetic lineage within Xanthomonas arboricola pv. juglandis as the causal agent of vertical oozing canker of Persian (English) walnut in France. Plant Pathology, 59, 1014–1022.

    Article  Google Scholar 

  • Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed.). Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Hedrick, P. W. (1985). Genetics of populations. In Jones and Bartlett (Eds), Boston.

  • Klement, Z., & Goodman, R. N. (1967). The hypersensitivity reaction to infection by bacterial plant pathogens. Annual Review of Plant Pathology, 5, 17–44.

    Google Scholar 

  • Lee, Y. A., Handson, L., Panopoulos, N. J., & Schroth, M. N. (1994). Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas arboricola pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology, 176(1), 173–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levinson, G., & Gutman, G. A. (1987). Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 4, 203–221.

    CAS  PubMed  Google Scholar 

  • Loreti, S., Gallelli, A., Belisario, A., Wajnberg, E., & Corazza, L. (2001). Investigation of genomic variability of Xanthomonas arboricola pv. juglandis by AFLP analysis. European Journal of Plant Pathology, 107, 583–591.

    Article  CAS  Google Scholar 

  • Maiden, M. C. J. (2006). Multilocus sequence typing of bacteria. Annual Review of Microbiology, 60, 561–588.

    Article  CAS  PubMed  Google Scholar 

  • Marcelletti, S., Ferrante, P., & Scortichini, M. (2010). Multilocus sequence typing reveals relevant genetic variation and different evolutionary dynamics among strains Xanthomonas arboricola pv. juglandis. Diversity, 2(10), 1205–1222.

    Article  CAS  Google Scholar 

  • McMurran, S. M. (1917). Walnut blight in the eastern United States. U.S. Department of Agriculture Bulletin 611. Washington: U.S. Department of Agriculture.

    Book  Google Scholar 

  • Mellano, M. A., & Cooksey, D. A. (1988). Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. Journal of Bacteriology, 170(6), 2879–2883.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosivand, M., Rahimian, H., & Shams-Bakhsh, M. (2009). Phenotypic and genotypic relatedness among Pseudomonas syringae pv. syringae strains isolated from sugarcane, stone fruits and wheat. Iranian Journal of Plant Pathology, 45, 19–21.

    Google Scholar 

  • Mulrean, E. M., & Schroth, N. M. (1981). A semiselective medium for the isolation of Xanthomonas campestris pv. juglandis from walnut buds and catkins. Phytopathology, 71, 366–339.

    Article  Google Scholar 

  • Mulrean, E. M., & Schroth, N. M. (1982). Ecology of Xanthomonas campestris pv. juglandis on Persian (English) walnut. Phytopathology, 72, 434–438.

    Article  Google Scholar 

  • OMAFRA, (2014). Walnut calendar. In: Guide to fruit production 2014–2015 - Publication 360. The Ontario Ministry of Agriculture, Food and Rural Affairs (Ed.), (pp. 219–230).

  • Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systematic and Evolutionary Microbiology, 59, 264–274.

    Article  CAS  PubMed  Google Scholar 

  • Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: methods in molecular biology (pp. 365–386). Totowa: Humana Press.

    Google Scholar 

  • Scortichini, M., Motta, E., & Biocca, M. (1997). Alcune comuni malattie del noce da legno (Juglans regia L.). Annali dell’Istituto Sperimentale per la Selvicoltura, 25–26, 363–371.

    Google Scholar 

  • Scortichini, M., Marchesi, U., & Di Prospero, P. (2001). Genetic diversity of Xanthomonas arboricola pv. juglandis (synonyms: X. campestris pv. juglandis; X. juglandis pv. juglandis) strains from different geographical areas shown by repetitive polymerase chain reaction genomic fingerprinting. Journal of Phytopathology, 149, 325–332.

    Article  CAS  Google Scholar 

  • Sharma, U. K., & Chatterji, D. (2010). Transcriptional switching in Escherichia coli during stress and starvation by modulation of σ70 activity. FEMS Microbiology Review, 34, 646–657.

    Article  CAS  Google Scholar 

  • Sneath, P. H. A. & Sokal, R. R. (1973). Numerical taxonomy. In W.H. Freeman & Co (Ed.), San Francisco.

  • Sokal, R. R., & Michener, C. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Vauterin, L., Hoste, B., Kersters, K., & Swings, J. (1995). Reclassification of Xanthomonas. International Journal of Systematic Bacteriology, 45, 472–89.

    Article  CAS  Google Scholar 

  • Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleid Acid Research, 19, 6823–6831.

    Article  CAS  Google Scholar 

  • Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31, 366–377.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was conducted in the Framework of the EU-COST 873 action “Bacterial disease of stone fruits and nuts”. This research was supported in part by Centro Ricerche Produzioni Vegetali (CRPV), Cesena, Italy, under the project “SAT Frutticole e Vite, Azione 16 - Batteriosi del noce” and by New Factor spa, Cerasuolo Ausa (RN), Italy. We wish to thank S. Cesbron (INRA, Beaucouzé Cedex, France) for her valuable help and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Giovanardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovanardi, D., Bonneau, S., Gironde, S. et al. Morphological and genotypic features of Xanthomonas arboricola pv. juglandis populations from walnut groves in Romagna region, Italy. Eur J Plant Pathol 145, 1–16 (2016). https://doi.org/10.1007/s10658-015-0809-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0809-2

Keywords

Navigation