Skip to main content

Advertisement

Log in

Sulphur supply impairs spread of Verticillium dahliae in tomato

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Vascular wilt caused by the soil-borne fungus Verticillium dahliae is a major yield and quality-limiting disease across a broad spectrum of crop plants worldwide. Sulphur-enhanced plant defence mechanisms provide an opportunity to effectively and environmentally safely constrain the wilt disease levels in planta. To evaluate the influence of sulphur nutrition on the protective potential of these mechanisms, two near-isogenic tomato genotypes differing in fungal susceptibility, were treated with low or supra-optimal sulphur supply. Microscopic analysis revealed a significant sulphur-induced decrease in the amount of infected vascular cells in both genotypes. However, plant shoot and severely pathogen-affected root growth did not display this distinct alleviating influence of sulphur nutrition. Rates of leaf photosynthesis were impeded by Verticillium dahliae infection in both genotypes especially under low sulphur nutrition. However, assimilate transport rates in the phloem sap were enhanced by fungal infection more in the resistant genotype and under high sulphur nutrition suggesting a stronger sink for assimilates in infected plant tissues possibly involved in sugar-induced defence. A SYBR Green-based absolute quantitative Real-Time assay using a species-specific primer was developed which sensitively reflected sulphur nutrition-dependent changes in fungal colonization patterns. High sulphur nutrition significantly reduced fungal spread in the stem in both tomato genotypes. Concentrations of selected sulphur-containing metabolites revealed an increase of the major anti-oxidative redox buffer glutathione under high sulphur nutrition in response to fungal colonization. Our study demonstrates the existence of sulphur nutrition-enhanced resistance of tomato against Verticillium dahliae mediated by sulphur-containing defence compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beffa, T. (1993). Inhibitory action of elemental sulphur (S°) on fungal spores. Canadian Journal of Microbiology, 39, 731–735.

    Article  CAS  Google Scholar 

  • Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.

    Article  PubMed  CAS  Google Scholar 

  • Bletsos, F., Thanassoulopoulos, C., & Roupakias, D. (2003). Effect of grafting on growth, yield, and Verticillium wilt of eggplant. HortScience, 38, 183–186.

    Google Scholar 

  • Bloem, E., Haneklaus, S., & Schnug, E. (2010). Influence of fertilizer practices on S-containing metabolites in garlic (Allium sativum L.) under field conditions. Journal of Agriculture and Food Chemistry, 58, 10690–10696.

    Article  CAS  Google Scholar 

  • Bowden, R. L., Rouse, D. I., & Sharkey, T. D. (1990). Mechanism of photosynthesis decrease by Verticillium dahliae in potato. Plant Physiology, 94, 1048–1055.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak, I., Hengeler, C., & Marschner, H. (1994). Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany, 45, 1251–1257.

    Article  CAS  Google Scholar 

  • Chen, P., Lee, B., & Robb, J. (2004). Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiological and Molecular Plant Pathology, 64, 283–291.

    Article  CAS  Google Scholar 

  • Diwan, N., Fluhr, R., Eshed, Y., Zamir, D., & Tanksley, S. D. (1999). Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theoretical and Applied Genetics, 98, 315–319.

    Article  CAS  Google Scholar 

  • Dreywood, R. (1946). Qualitative test for carbohydrate material. Industrial and Engineering Chemistry, Analytical Edition, 18, 499.

    Article  CAS  Google Scholar 

  • Droux, M. (2004). S assimilation and the role of S in plant metabolism: a survey. Photosynthesis Research, 79, 331–348.

    Article  PubMed  CAS  Google Scholar 

  • Dubuis, P. H., Marazzi, C., Städler, E., & Mauch, F. (2005). Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. Journal of Phytopathology, 153, 27–36.

    Article  CAS  Google Scholar 

  • Duressa, D., Rauscher, G., Koike, S. T., Mou, B., Hayes, R. J., Maruthachalam, K., Subbarao, K. V., & Klosterman, S. (2012). A Real-Time PCR assay for detection and quantification of Verticillium dahliae in spinach seed. Phytopathology, 102, 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2010). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155, 2–18.

    Article  Google Scholar 

  • Fradin, E. F., & Thomma, B. P. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86.

    Article  PubMed  CAS  Google Scholar 

  • Fradin, E. F., Zhang, Z., Juarez Ayala, J. C., Castroverde, C. D., Nazar, R. N., Robb, J., Liu, C. M., & Thomma, B. P. (2009). Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology, 150, 320–332.

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea, N. (2009). To what extent are soil amendments useful to control Verticillium wilt? Pest Managment Science, 65, 831–839.

    Article  CAS  Google Scholar 

  • Höller, K., Király, L., Künstler, A., Müller, M., Gullner, G., Fattinger, M., & Zechmann, B. (2010). Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus–infected genetically susceptible Nicotiana tabacum plants. Molecular Plant-Microbe Interactions, 23, 1448–1459.

    Article  PubMed  Google Scholar 

  • Juszczuk, I. M., & Ostaszewska, M. (2011). Respiratory activity, energy and redox status in sulphur-deficient bean plants. Environmental and Experimental Botany, 74, 245–254.

    Article  CAS  Google Scholar 

  • Kawchuk, L. M., Hachey, J., Lynch, D. R., Kulcsar, F., van Rooijen, G., Waterer, D. R., Robertson, A., Kokko, E., Byers, R., Howard, R. J., Fischer, R., & Prüfer, D. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Science U S A., 98, 6511–6515.

    Article  CAS  Google Scholar 

  • Klikocka, H., Haneklaus, S., Bloem, E., & Schnug, E. (2005). Influence of S fertilization on infection of potato tubers with Rhizoctonia solani and Streptomyces scabies. Journal of Plant Nutrition, 28, 819–833.

    Article  CAS  Google Scholar 

  • Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 47, 39–62.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, C., Jost, R., Lipschis, M., Kopp, B., Hartmann, M., & Hell, R. (2007). Sulfur-enhanced defence: effects of S metabolism, nitrogen supply, and pathogen lifestyle. Plant Biology, 9, 608–619.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, R. P., Griffin, T. S., & Honeycutt, C. W. (2010). Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Disease, 94, 1491–1502.

    Article  Google Scholar 

  • Moradi, M., Oerke, E. C., Steiner, U., Tesfaye, D., Schellander, K., & Dehne, H. W. (2010). Microbiological and SYBR green real-time PCR detection of major Fusarium head blight pathogens on wheat ears. Microbiology, 79, 655–663.

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova, V. J., Gakière, B., Kempa, S., Adamik, M., Willmitzer, L., Hesse, H., & Hoefgen, R. (2004). Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. Journal of Experimental Botany, 55, 1861–1870.

    Article  PubMed  CAS  Google Scholar 

  • Nogués, S., Cotxarrera, L., Alegre, L., & Trillas, M. I. (2002). Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytologist, 154, 461–470.

    Article  Google Scholar 

  • Novo, M., Gayoso, C. M., Pomar, F., Lucas, M. M., Ros Barceló, A., & Merino, F. (2007). Sulphur accumulation after Verticillium dahliae infection of two pepper cultivars differing in degree of resistance. Plant Pathology, 56, 998–1004.

    Article  CAS  Google Scholar 

  • Pascual, I., Azcona, I., Morales, F., Aguirreolea, J., & Sánchez-Díaz, M. (2010). Photosynthetic response of pepper plants to wilt induced by Verticillium dahliae and soil water deficit. Journal of Plant Physiology, 167, 701–708.

    Article  PubMed  CAS  Google Scholar 

  • Pshibytko, N. L., Zenevich, L. A., & Kabashnikova, I. F. (2006). Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russian Journal of Plant Pathology, 53, 25–31.

    Article  CAS  Google Scholar 

  • Rausch, T., & Wachter, A. (2005). S metabolism: a versatile platform for launching defence operations. Trends in Plant Science, 10, 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider, A., Nikiforova, V., Hoefgen, R., De Kok, L. J., & Papenbrock, J. (2005). Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiology and Biochemistry, 43, 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Robb, J., Lee, S.-W., Mohan, R., & Kolattukudy, P. E. (1991). Chemical characterization of stress-induced vascular coating in tomato. Plant Physiology, 97, 528–536.

    Article  PubMed  CAS  Google Scholar 

  • Robb, J., Lee, B., & Nazar, R. N. (2007). Gene suppression in a tolerant tomato-vascular pathogen interaction. Planta, 226, 299–309.

    Google Scholar 

  • Roitsch, T. (1999). Source-sink regulation by sugars and stress. Current Opinion in Plant Biology, 2, 198–206.

    Article  PubMed  CAS  Google Scholar 

  • Roitsch, T., Balibrea, M. E., Hofmann, M., Proels, R., & Sinha, A. K. (2003). Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany, 54, 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Saeed, I. A. M., McGuidwin, A. E., Rouse, D. I., & Sharkey, T. D. (1999). Limitation to photosynthesis in Pratylenchus penetrans- and Verticillium dahliae-infected potato. Crop Science, 39, 1340–1346.

    Article  Google Scholar 

  • Scharte, J., Schön, H., & Weis, E. (2005). Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant, Cell & Environment, 28, 1421–1435.

    Article  CAS  Google Scholar 

  • Schnug, E., Haneklaus, S., Borchers, A., & Polle, A. (1995). Relations between sulphur supply and glutathione, ascorbate and glucosinolate concentrations in Brassica napus varieties. Journal of Plant Nutrition and Soil Science, 158, 67–70.

    Article  CAS  Google Scholar 

  • Sinha, A. K., Hofmann, M. G., Romer, U., Kockenberger, W., Elling, L., & Roitsch, T. (2002). Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiology, 128, 1480–1489.

    Article  PubMed  CAS  Google Scholar 

  • Tweedy, B. G. (1981). Inorganic S as a fungicide. Residue Reviews, 78, 43–68.

    Article  CAS  Google Scholar 

  • Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. M. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, 35, W 71–W 74.

    Article  Google Scholar 

  • Vanacker, H., Carver, T. L. W., & Foyer, C. H. (2000). Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiology, 123, 1289–1300.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. (2006). HC-toxin. Phytochemistry, 67, 1406–1413.

    Article  PubMed  CAS  Google Scholar 

  • White, T. J., Bruns, T. D., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In M. A. Innis, D. H. Gelfrand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols (pp. 315–322). San Diego: Academic Press.

    Google Scholar 

  • Williams, J. S., & Cooper, R. M. (2003). Elemental sulphur is produced by diverse plant families as a component of defence against fungal and bacterial pathogens. Physiological and Molecular Plant Pathology, 63, 3–16.

    Article  CAS  Google Scholar 

  • Williams, J. S., Hall, S. A., Hawkesford, M. J., Beale, M. H., & Cooper, R. M. (2002). Elemental S and thiol accumulation in tomato and defence against a fungal vascular pathogen. Plant Physiology, 128, 150–159.

    Article  PubMed  CAS  Google Scholar 

  • Zahn, M., Teuber, F., Bollig, K., & Horst, W. (2011). Quantification of Pseudocercospora fuligena in tomato lines carrying introgressions from Solanum habrochaites using a qPCR assay. Plant Disease, 95, 394–400.

    Article  CAS  Google Scholar 

  • Zorn, W., Marks, G., Heß, H., & Bergmann, W. (Eds.). (2006). Handbuch zur visuellen Diagnose von Ernährungsstörungen bei Kulturpflanzen. München: Springer Spektrum Verlag.

    Google Scholar 

Download references

Acknowledgments

The valuable contribution to S0 analysis of R. Frankfurter in the Lab of Prof. C. Vogt (Institute for Analytical Chemistry, Leibniz University Hannover) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Horst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Regression line showing the obtained cycle threshold values plotted against the serial-dilution of V. dahliae gDNA using the LeVD primer pair. Values represent means ± SD n = 3 (JPEG 834 kb)

ESM 2

Effect of S supply on S concentrations in leaves of V. dahliae-infected tomato genotypes. (After 3 weeks of pre-culture at 5 mM or 1 mM SO4-S plants were root inoculated and harvested 7 dpi. Data represent means ± SD n = 3. Results of the analysis of variance are given according to their level of significance as *, **, ***, for P ≤ 0.05, 0.01, 0.001, respectively, n.s. non-significant.) (JPEG 62 kb)

ESM 3

Total root systems of (a) the sensitive tomato genotype GCR 26 and (b) the resistant tomato genotype GCR 218. Root systems were washed out of substrate and total root length was determined with the WinRHIZO Software (Regent Instruments Inc., Canada). Bar represents 5 cm (JPEG 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollig, K., Specht, A., Myint, S.S. et al. Sulphur supply impairs spread of Verticillium dahliae in tomato. Eur J Plant Pathol 135, 81–96 (2013). https://doi.org/10.1007/s10658-012-0067-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0067-5

Keywords

Navigation