Skip to main content
Log in

Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In order to understand the underlaying causes of new severe turcicum leaf blight outbreaks in East Africa, a survey was undertaken in Uganda to examine the sorghum—Setosphaeria turcica interaction in terms of disease severity and incidence, the overall fungal population structure, and new resistant resources. Highest disease severities were recorded on caudatum accessions, whereas kafir genotypes were most resistant. The disease was more severe in the most humid farmlands compared to moderately dry agro-ecologies. In districts with wide adoption of the Epuripur variety a very high incidence (100%) of turcicum leaf blight was found. The two S. turcica mating type genes MAT1-1 and MAT1-2 assessed on fungal isolates deriving from both sorghum and maize diseased leaves were found in 20 of 23 districts sampled and in equal proportions. Upon cross inoculation on maize differential lines, four S. turcica isolates were identified as race 1, two as race 2, and one isolate corresponded to race 0 and race 3, respectively. The remaining 10 S. turcica isolates did not cause any disease symptoms on the maize lines assessed. Highly resistant accessions originating from a regional collection were found among the five sorghum races (kafir, guinea, caudatum, bicolor and durra), and are now implemented in new sorghum disease resistance programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adipala, E., Lipps, E. P., & Madden, L. V. (1993a). Occurrence of Exserohilum turcicum on maize in Uganda. Plant Disease, 77, 202–205.

    Article  Google Scholar 

  • Adipala, E., Lipps, P. E., & Madden, L. V. (1993b). Reaction of maize cultivars from Uganda to Exserohilum turcicum. Phytopathology, 83, 217–223.

    Article  Google Scholar 

  • Banke, S., & McDonald, B. A. (2005). Migration patterns among global populations of the pathogenic fungus Mycosphaerella graminicola. Molecular Ecology, 14, 1881–1896.

    Article  PubMed  CAS  Google Scholar 

  • Bantilan, M. C. S., Deb, U. K., Gowda, C. L. L., Reddy, B. V. S., Obilana, A. B., & Evenson, R. E. (2004). Introduction. In M. C. S. Bantilan, U. K. Deb, C. L. L. Gowda, B. V. S. Reddy, B. A. B. Obilana, & R. E. Evenson (Eds.), Sorghum genetic enhancement: Research process, dissemination and impacts (pp. 5–18). India: ICRISAT Patancheru.

    Google Scholar 

  • Bigirwa, A. G., Julian, A. M., & Adipala, E. (1993). Characterization of Ugandan isolates of Exserohilum turcicum from maize. African Crop Science Journal, 1, 69–72.

    Google Scholar 

  • Borchardt, S., Welz, H. G., & Geiger, H. H. (1998). Genetic structure of Setosphaeria turcica populations in tropical and temperate climates. Phytopathology, 88, 322–329.

    Article  PubMed  CAS  Google Scholar 

  • Broers, L. H. M., Cuesta Subias, X., & López Atilano, R. M. (1996). Field assessment of quantitative resistance to yellow rust in ten spring bread wheat cultivars. Euphytica, 90, 9–16.

    Google Scholar 

  • Butler, G., Rasmussen, M. D., Lin, M. F., Santos, M. A., Sakthikumar, S., Munro, C. A., et al. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 459, 657–662.

    Article  PubMed  CAS  Google Scholar 

  • Carson, M. L. (1995). Inheritance of latent period length in maize infected with Exserohilum turcicum. Plant Disease, 79, 581–585.

    Article  Google Scholar 

  • Ceballos, H., Deutsch, J. A., & Gutiérrez, H. (1991). Recurrent selection for resistance to Exserohilum turcicum in eight subtropical populations. Crop Science, 31, 964–971.

    Article  Google Scholar 

  • Chiang, M.-Y., van Dyke, C. G., & Leonard, K. J. (1989). Evaluation of endemic fungi for potential biological control of Johansongrass (Sorghum halepense): Screening and host range tests. Plant Disease, 73, 459–464.

    Article  Google Scholar 

  • Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). USA: Wiley.

    Google Scholar 

  • Couch, B. C., Fudal, I., Lebrun, M. H., Tharreau, D., Valent, B., van Kim, P., et al. (2005). Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics, 170, 613–630.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J. L., & Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833.

    Article  PubMed  CAS  Google Scholar 

  • De Vries, J., & Toenniessen, G. (2001). Securing the harvest. Biotechnology and breeding methods for African crops. Wallingford: CABI Publ.

    Google Scholar 

  • Dong, J., Fan, Y., Gui, X., An, X., Ma, J., & Dong, Z. (2008). Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in north China. American Journal of Agricultural and Biological Sciences, 3, 389–398.

    Article  Google Scholar 

  • Dyer, P. S. (2007). Sexual reproduction and significance of MAT in the Aspergilli. In J. Heitman, J. W. Kronstad, J. W. Taylor, & L. A. Casselton (Eds.), Sex in fungi molecular determination and evolutionary principles (pp. 123–142). USA: ASM.

    Google Scholar 

  • Ebiyau, J., & Oryokot, O. E. (2001). Sorghum (Sorghum bicolor (L.) Moench. Agriculture in Uganda. Volume II. Crops: National Agricultural Research Organisation Fountain Publ

  • Esele, J. P. E. (1995). Foliar and head diseases of sorghum. African Crop Science Journal, 3, 185–189.

    Google Scholar 

  • Faris, J. D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Clouter, S., et al. (2010). A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proceedings of the National Academy of Sciences of the United States of America, 107, 13544–13549.

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organisation of the United Nations (FAO). Rome, Italy. www.faostat.fao.org retrieved 1st June 2010

  • Ferguson, L. M., & Carson, M. L. (2004). Spatial diversity of Setosphaeria turcica sampled from the eastern United States. Phytopathology, 94, 892–900.

    Article  PubMed  Google Scholar 

  • Ferguson, L., & Carson, M. (2007). Temporal variation in Setosphaeria turcica between 1974 and 1994 and origin of races 1, 23, and 23 N in the United States. Phytopathology, 97, 1501–1511.

    Article  PubMed  CAS  Google Scholar 

  • Galagan, E. J., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., et al. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 438, 1105–1115.

    Article  PubMed  CAS  Google Scholar 

  • Gopal Reddy, V., Kameshwara, R. N., Reddy, B. V. S., & Prasada Rao, K. E. (2002). Geographic distribution of basic and intermediate races in the world collection of sorghum germplasm. International Sorghum and Millets Newsletter, 43, 15–17.

    Google Scholar 

  • Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.

    Article  PubMed  CAS  Google Scholar 

  • Hamid, A. H., & Aragaki, M. (1974). Inheritance of pathogenicity in Setosphaeria turcica. Phytopathology, 65, 280–283.

    Article  Google Scholar 

  • Harlan, J. R., & de Wet, J. M. J. (1972). Simplified classification of cultivated sorghum. Crop Science, 12, 172–176.

    Article  Google Scholar 

  • Hooker, A. L. (1963). Monogenic resistance in Zea mays L to Helminthosporium turcicum. Crop Science, 3, 381–383.

    Article  Google Scholar 

  • ICRISAT (1996). The world sorghum and millet economies: Facts, trends and outlook. Rome, Italy: Food and Agricultural Organization of the United Nations (FAO), and International Crops Research Institute for the Semi-arid Tropics (ICRISAT), ICRISAT, Patancheru, India and FAO, Rome

  • Kimber, C. T. (2000). Origins of domesticated sorghum and its early diffusion into India and China. In C. W. Smith & R. A. Frederiksen (Eds.), Sorghum: Origin, history, technology and production (pp. 3–98). New York: John.

    Google Scholar 

  • Leonard, K. J. (1988). Setosphaeria turcica, cause of northern corn leaf blight, and other Setosphaeria spp. In G. S. Sidhu (Ed.), Advances in plant pathology. Genetics of plant pathogenic fungi (6: 241–248). Academic Press, London

  • Leonard, K. J., Levy, Y., & Smith, D. R. (1989). Proposed nomenclature for pathogenic races of Exserohilum turcicum on corn. Plant Disease, 73, 776–777.

    Google Scholar 

  • Lorang, J. M., Sweat, T. A., & Wolpert, T. J. (2007). Plant disease susceptibility conferred by a “resistance” gene. Proceedings of the National Academy of Sciences of the United States of America, 104, 14861–14866.

    Article  PubMed  CAS  Google Scholar 

  • Luttrell, E. S. (1958). The perfect stage of Helminthosporium turcicum. Phytopathology, 48, 281–287.

    Google Scholar 

  • Mbeyagala, E. (2010). Genetic diversity among sorghum landraces in Uganda. MSc Thesis. Makerere Univ. Kampala, Uganda

  • Miracle, M. P. (1965). The introduction and spread of maize in Africa. The Journal of African History, 6, 39–55.

    Article  Google Scholar 

  • Moghaddam, F., & Pataky, J. K. (1994). Reactions of isolates from matings of races 1 and 23 N of Exserohilium turcicum. Plant Disease, 78, 767–771.

    Article  Google Scholar 

  • Muiru, W. M. (2008). Histological studies and characterization of races of Exserohilum turcicum the causal maize agent of northern leaf blight of maize in Kenya. PhD thesis. University of Nairobi, Kenya

  • Ngugi, H. K., King, S. B., Holt, J., & Julian, A. M. (2001). Simultaneous temporal progress of sorghum anthracnose and leaf blight in crop mixtures with disparate patterns. Phytopathology, 91, 720–729.

    Article  PubMed  CAS  Google Scholar 

  • Nkonya, E. T., Xavery, E. P., Akonaay, H., Mwangi, W., Anandajasekeram, P., Verkuijl, H., Martella, D., Moshi, A. (1998). Adoption of maize production technologies in Northern Tanzania. CIMMYT, the United Republic of Tanzania and Southern African Centre for cooperation in Agricultural Research (SACCAR)

  • Ogliari, J., Guimarães, M., Geraldi, I., & Camargo, W. (2005). New resistance genes in the Zea mays—Exserohilum turcicum pathosystem. Genetics and Molecular Biology, 28, 435–439.

    Article  CAS  Google Scholar 

  • O’Gorman, C. M., Fuller, H. T., & Dyer, P. S. (2009). Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature, 457, 471–475.

    Article  PubMed  Google Scholar 

  • Okori, P., Rubaihayo, P. R., Ekwamu, A., Fahleson, J., & Dixelius, C. (2004). Genetic characterization of Cercospora sorghi from cultivated and wild sorghum and its relationship to other Cercospora fungi. Phytopathology, 94, 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Pingali, P. L., & Pandey, S. (2001). World maize needs meeting: Technological opportunities and priorities for the public sector. In P. L. Pingali (Ed.), World maize facts and trends. Meeting world maize needs: Technological opportunities and priorities for the public sector. Mexico: CIMMYT.

    Google Scholar 

  • Pratt, R. C., & Gordon, S. G. (2006). Breeding for resistance to maize foliar pathogens. Plant Breeding Review, 26, 119–173.

    Google Scholar 

  • Ramathani, I. (2009). Characterisation of turcicum leaf blight epidemics and pathogen populations in the Exserohilum turcicum – Sorghum pathosystem in Uganda. MSc thesis. Makerere Univ. Kampala, Uganda

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach. New York: McGraw-Hill.

    Google Scholar 

  • Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75–100.

    Article  PubMed  CAS  Google Scholar 

  • Tilahun, T., Ayana, G., Abebe F., Wegary, D. (2001). Maize pathology research in Ethiopia: A review. In N. Madefro, D. Tanner, S. Twumasi-Afriyie (Eds.) Enhancing the contributions of maize to food security in Ethiopia (pp. 97–105), Proc. 2nd National workshop of Ethiopia. 12–16 Nov 2001. EARO and CIMMYT, Addis Ababa, Ethiopia

  • Weltz, H. G. (1998). Genetics and epidemiology of the pathosystem Zea mays/Setosphaeria turcica. Doctoral thesis. University of Hohenheim

  • Welz, H. G., & Geiger, H. H. (2000). Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breeding, 119, 1–14.

    Article  CAS  Google Scholar 

  • Wortmann, C. S., & Eledu, C. A. (1999). Uganda’s Agro-ecological zones: A guide for policy makers. Uganda: CIAT Kampala.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the SIDA supported BIOEARN program and the SIDA-SAREC grant SWE-2005-453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Martin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Agro-ecological zones and climate conditions in Uganda. Adapted from Wortmann and Eledu (1999). (DOCX 59.2 kb)

Table S2

Single sequence-repeat (SSR) based PCR primers used for the S. turcica population study. (DOCX 18 kb)

Fig. S1

Map of Uganda showing major agro-ecological zones and selected districts. Farming systems tend to somewhat overlap between agro-ecological zones. Scale in km. (DOCX 449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramathani, I., Biruma, M., Martin, T. et al. Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda. Eur J Plant Pathol 131, 383–392 (2011). https://doi.org/10.1007/s10658-011-9815-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9815-1

Keywords

Navigation