Skip to main content
Log in

Seasonal colonisation of apple trees by ‘Candidatus Phytoplasma mali’ revealed by a new quantitative TaqMan real-time PCR approach

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Apple proliferation (AP), caused by ‘Candidatus Phytoplasma mali’, is an economically important disease affecting many apple-growing areas in Europe. A new TaqMan real-time PCR assay was established for absolute quantification of ‘Ca. P. mali’ by using a single-copy gene of the host plant as a reference, which is amplified with the pathogen DNA in a single-tube reaction. Normalised estimates of phytoplasma concentration are ultimately expressed as the number of phytoplasma cells per host plant cell. The assay was used to monitor the ‘Ca. P. mali’ titre over the course of two growing seasons in roots and branches of symptomatic and asymptomatic but AP-positive apple trees. All 252 root samples from symptomatic and asymptomatic trees tested positive, with an average number of 59.8 ± 5.68 (standard error) and 55.1 ± 9.83 ‘Ca. P. mali’ per host cell, respectively. From the 378 shoot samples analysed, 81% of the symptomatic and only 20% of the asymptomatic samples were AP-positive with an average number of 9.4 ± 1.04 and 0.7 ± 0.13 ‘Ca. P. mali’ per host cell, respectively. This strengthens evidence that not the pathogen occurrence alone but the presence of a certain quantity of ‘Ca. P. mali’ in the aerial tree sections is involved in symptom expression. In addition, pronounced seasonality of the phytoplasma concentration was found, not only in branches, but also for the first time in roots of symptomatic and asymptomatic apple trees. Highest phytoplasma levels in roots were detected from December to May.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Farid, B., Jahangir, M., van den Hondel, C. A. M. J. J., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Fungal infection-induced metabolites in Brassica rapa. Plant Science, 176, 608–615.

    Article  CAS  Google Scholar 

  • Baric, S., & Dalla Via, J. (2004). A new approach to apple proliferation detection: a highly sensitive real-time PCR assay. Journal of Microbiological Methods, 57, 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Baric, S., Kerschbamer, C., & Dalla Via, J. (2006). TaqMan real-time PCR versus four conventional PCR assays for detection of apple proliferation phytoplasma. Plant Molecular Biology Reporter, 24, 169–184.

    Article  CAS  Google Scholar 

  • Baric, S., Kerschbamer, C., & Dalla Via, J. (2007). Detection of latent apple proliferation infection in two differently aged apple orchards in South Tyrol (northern Italy). Bulletin of Insectology, 60, 265–266.

    Google Scholar 

  • Baric, S., Kerschbamer, C., Vigl, J., & Dalla Via, J. (2008a). Translocation of apple proliferation phytoplasma via natural root grafts—a case study. European Journal of Plant Pathology, 121, 207–211.

    Article  Google Scholar 

  • Baric, S., Monschein, S., Hofer, M., Grill, D., & Dalla Via, J. (2008b). Comparability of genotyping data obtained by different procedures—an interlaboratory survey. Journal of Horticultural Science and Biotechnology, 83, 183–190.

    Google Scholar 

  • Bertaccini, A. (2007). Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience, 12, 673–689.

    Article  CAS  PubMed  Google Scholar 

  • Bisognin, C., Schneider, B., Salm, H., Grando, M. S., Jarausch, W., Moll, E., et al. (2008). Apple proliferation resistance in apomictic rootstocks and its relationship to phytoplasma concentration and simple sequence repeat genotypes. Phytopathology, 98, 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Brunner, K., Paris, M. P. K., Paolino, G., Burstmayr, H., Lemmens, M., Berthiller, F., et al. (2009). A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat. Analytical and Bioanalytical Chemistry, 395, 1385–1394.

    Article  CAS  PubMed  Google Scholar 

  • Carraro, L., Ermacora, P., Loi, N., & Osler, R. (2004). The recovery phenomenon in apple proliferation-infected apple trees. Journal of Plant Pathology, 86, 141–146.

    Google Scholar 

  • Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions, 17, 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  • Ciccotti, A., Bianchedi, P. L., Bragagna, P., Deromedi, M., Filippi, M., Forno, F., et al. (2008). Natural and experimental transmission of Candidatus Phytoplasma mali by root bridges. Acta Horticulturae, 781, 459–464.

    Google Scholar 

  • Costa, F., Stella, S., Van de Weg, W. E., Guerra, W., Cecchinel, M., Dalla Via, J., et al. (2005). Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica, 141, 181–190.

    Article  CAS  Google Scholar 

  • Evert, R. F. (1963). The cambium and seasonal development of the phloem in Pyrus malus. American Journal of Botany, 50, 149–159.

    Article  Google Scholar 

  • Frisinghelli, C., Delaiti, L., Grando, M. S., Forti, D., & Vindimian, M. E. (2000). Cacopsylla costalis (Flor 1861), as a vector of apple proliferation in Trentino. Journal of Phytopathology, 148, 425–431.

    Article  CAS  Google Scholar 

  • Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N., & Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology, 9, 403–423.

    Article  CAS  PubMed  Google Scholar 

  • Jarausch, W., Peccerella, T., Schwind, N., & Krczal, G. (2004). Establishment of a quantitative real-time PCR assay for the quantification of apple proliferation phytoplasmas in plants and insects. Acta Horticulturae, 657, 415–420.

    CAS  Google Scholar 

  • Kaminska, M., Gabryszewska, E., Korbin, M., & Rudzinska-Langwald, A. (2002). Phytoplasma detection in some ornamental plants propagated in vitro. Acta Horticulturae, 568, 237–245.

    CAS  Google Scholar 

  • Kartte, S., & Seemüller, E. (1988). Variable response within the genus Malus to the apple proliferation disease. Journal of Plant Diseases and Protection, 95, 25–34.

    Google Scholar 

  • Lee, I. M., Davis, R. E., & Gundersen-Rindal, D. E. (2000). Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology, 54, 221–255.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, A. D., Mellerowicz, E. J., Chow, C. H., Riding, R. T., & Little, C. H. A. (1994). Fluctuations in ribosomal RNA gene content and nucleolar activity in the cambial region of Abies balsamea shoots during reactivation. American Journal of Botany, 81, 1384–1390.

    Article  CAS  Google Scholar 

  • Loi, N., Ermacora, P., Carraro, L., Osler, R., & Chen, T. A. (2002). Production of monoclonal antibodies against apple proliferation phytoplasma and their use in serological detection. European Journal of Plant Pathology, 108, 81–86.

    Article  CAS  Google Scholar 

  • Musetti, R., di Toppi, L. S., Ermacora, P., & Favali, M. A. (2004). Recovery in apple trees infected with the apple proliferation phytoplasma: An ultrastructural and biochemical study. Phytopathology, 94, 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Oshima, K., Kakizawa, S., Arashida, R., Ishii, Y., Hoshi, A., Hayashi, Y., et al. (2007). Presence of two glycolytic gene clusters in a severe pathogenic line of Candidatus Phytoplasma asteris. Molecular Plant Pathology, 8, 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Pedrazzoli, F., Ciccotti, A., Bianchedi, P., Salvadori, A., & Zorer, R. (2008). Seasonal colonisation behaviour of ‘Candidatus Phytoplasma mali’ in apple trees in Trentino. Acta Horticulturae, 781, 483–489.

    Google Scholar 

  • Rogers, S. O., & Bendich, A. J. (1987). Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molecular Biology, 9, 509–520.

    Article  CAS  Google Scholar 

  • Saracco, P., Bosco, D., Veratti, F., & Marzachì, C. (2006). Quantification over time of chrysanthemum yellows phytoplasma (16Sr-I) in leaves and roots of the host plant Chrysanthemum carinatum (Schousboe) following inoculation with its insect vector. Physiological and Molecular Plant Pathology, 67, 212–219.

    Article  Google Scholar 

  • Schaper, U., & Seemüller, E. (1982). Conditions of the phloem and the persistence of mycoplasmalike organisms associated with apple proliferation and pear decline. Phytopathology, 72, 736–742.

    Article  Google Scholar 

  • Schaper, U., & Seemüller, E. (1984). Recolonization of the stem of apple proliferation and pear decline-diseased trees by the causal organisms in spring. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 91, 608–613.

    Google Scholar 

  • Schmid, G. (1975). Prolonged observations on spread and behaviour of proliferation disease in apple orchards. Acta Horticulturae, 44, 183–192.

    Google Scholar 

  • Schneider, B., & Seemüller, E. (1994). Presence of two sets of ribosomal genes in phytopathogenic Mollicutes. Applied and Environmental Microbiology, 60, 3409–3412.

    CAS  PubMed  Google Scholar 

  • Schneider, B., Seemüller, E., Smart, C. D., & Kirkpatrick, B. C. (1995). Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In S. Razin & J. G. Tully (Eds.), Molecular and diagnostic procedures in mycoplasmology, Vol. 1 (pp. 369–380). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Sears, B. B., Klomparens, K. L., Wood, J. I., & Schewe, G. (1997). Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaf tip cultures. Physiological and Molecular Plant Pathology, 50, 275–287.

    Article  Google Scholar 

  • Seemüller, E., & Schneider, B. (2004). ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology, 54, 1217–1226.

    Article  PubMed  Google Scholar 

  • Seemüller, E., & Schneider, B. (2007). Differences in virulence and genomic features of strains of ‘Candidatus Phytoplasma mali’, the apple proliferation agent. Phytopathology, 97, 964–970.

    Article  PubMed  Google Scholar 

  • Seemüller, E., Kunze, L., & Schaper, U. (1984a). Colonization behavior of MLO, and symptom expression of proliferation-diseased apple trees and decline-diseased pear trees over a period of several years. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 91, 525–532.

    Google Scholar 

  • Seemüller, E., Schaper, U., & Zimbelmann, F. (1984b). Seasonal variation in the colonization patterns of mycoplasmalike organisms associated with apple proliferation and pear decline. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 91, 371–382.

    Google Scholar 

  • Sivaci, A. (2006). Seasonal changes of total carbohydrate contents in three varieties of apple (Malus sylvestris Miller) stem cuttings. Scientia Horticulturae, 109, 234–237.

    Article  CAS  Google Scholar 

  • Tedeschi, R., & Alma, A. (2004). Transmission of apple proliferation phytoplasma by Cacopsylla melanoneura (Homoptera: Psyllidae). Journal of Economic Entomology, 97, 8–13.

    Article  PubMed  Google Scholar 

  • Tedeschi, R., & Alma, A. (2006). Fieberiella florii (Homoptera: Auchenorrhyncha) as a vector of “Candidatus Phytoplasma mali”. Plant Disease, 90, 284–290.

    Article  CAS  Google Scholar 

  • Torres, E., Bertolini, E., Cambra, M., Montón, C., & Martín, M. P. (2005). Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Molecular and Cellular Probes, 19, 334–340.

    Article  CAS  PubMed  Google Scholar 

  • Tromp, J. (1983). Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant and Soil, 71, 401–413.

    Article  CAS  Google Scholar 

  • Valsesia, G., Gobbin, D., Patocchi, A., Vecchione, A., Pertot, I., & Gessler, C. (2005). Development of a high-throughput method for quantification of Plasmopara viticola DNA on grape leaves by means of quantitative real-time polymerase chain reaction. Phytopathology, 95, 672–678.

    Article  CAS  PubMed  Google Scholar 

  • Varma, A., Padh, H., & Shrivastava, N. (2007). Plant genomic DNA isolation: an art or a science. Biotechnology Journal, 2, 386–392.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to T. Alber for making his orchard available for sample collection, to M. Wolf for providing data on symptom monitoring and to M. Falk for help with statistical analyses. This work was funded by the Autonomous Province of Bozen/Bolzano, Italy. The South Tyrolean Fruit Growers’ Co-operatives, in particularly VOG and VIP, are acknowledged for co-financing the Strategic Project on Apple Proliferation—APPL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Baric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baric, S., Berger, J., Cainelli, C. et al. Seasonal colonisation of apple trees by ‘Candidatus Phytoplasma mali’ revealed by a new quantitative TaqMan real-time PCR approach. Eur J Plant Pathol 129, 455–467 (2011). https://doi.org/10.1007/s10658-010-9706-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9706-x

Keywords

Navigation