Skip to main content

Advertisement

Log in

Hairpin-based virus resistance depends on the sequence similarity between challenge virus and discrete, highly accumulating siRNA species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Virus resistance can be effectively generated in transgenic plants by using the plant’s silencing machinery. To study the specificity of gene-silencing-based resistance, homozygous tobacco (Nicotiana tabacum L.) plants containing a 597-nt hairpin RNA construct of the Potato Virus Y (PVY) replicase sequence were challenged with a variety of PVY strains. The transgene-carrying tobacco line was immune to five potato PVY strains with high sequence similarity (88.3–99.5%) to the transgene. Infection with more distant tomato and pepper PVY field strains (86–86.8% sequence similarity) caused delayed symptom appearance in the transgenic tobacco. Transgene production of small interfering (si) RNA was detected by northern blot and measured using a custom-designed microarray for the detection of small RNAs. siRNA accumulation peaks were observed throughout the inverted-repeat transgene. In the resistance-breaking tomato and pepper strains there were nucleotide differences in the sequences correlated to siRNA transgene accumulation, indicating the role of siRNA specificity in resistance breaking. The log of transgene siRNA signal intensity increased with probe GC content, indicating that the accumulating siRNA molecules were GC-rich. Sequence similarity of highly accumulating siRNAs with the target virus strain appears to be important for both resistance and resistance-breaking characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brodersen, P., & Voinnet, O. (2006). The diversity of RNA silencing pathways in plants. Trends in Genetics, 22, 268–80.

    Article  CAS  PubMed  Google Scholar 

  • Bucher, E., Lohuis, D., van Poppel, P. M., Geerts-Dimitriadou, C., Goldbach, R., & Prins, M. (2006). Multiple virus resistance at a high frequency using a single transgene construct. The Journal of General Virology, 87, 3697–3701.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Lohuis, D., Goldbach, R., & Prins, M. (2004). High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Molecular Breeding, 14, 215–226.

    Article  Google Scholar 

  • Daxinger, L., Kanno, T., Bucher, E., van der Winden, J., Naumann, U., Matzke, A. J., et al. (2009). A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. The EMBO Journal, 28, 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Di Nicola-Negri, E., Brunetti, A., Tavazza, M., & Ilardi, V. (2005). Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Research, 14, 989–94.

    Article  PubMed  Google Scholar 

  • Ding, S. W., & Voinnet, O. (2007). Antiviral immunity directed by small RNAs. Cell, 130, 413–26.

    Article  CAS  PubMed  Google Scholar 

  • Duan, C. G., Wang, C. H., Fang, R. X., & Guo, H. S. (2008). Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J. Virol.

  • Eamens, A., Wang, M. B., Smith, N. A., & Waterhouse, P. M. (2008). RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiology, 147, 456–68.

    Article  CAS  PubMed  Google Scholar 

  • Fitchen, J. H., & Beachy, R. N. (1993). Genetically engineered protection against viruses in transgenic plants. Annual Review of Microbiology, 47, 739–63.

    Article  CAS  PubMed  Google Scholar 

  • Fusaro, A. F., Matthew, L., Smith, N. A., Curtin, S. J., Dedic-Hagan, J., Ellacott, G. A., et al. (2006). RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Reports, 7, 1168–75.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., et al. (2010). Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. The Plant Cell, 22, 481–96.

    Article  CAS  PubMed  Google Scholar 

  • Glais, L., Tribodet, M., & Kerlan, C. (2002). Genomic variability in Potato potyvirus Y (PVY): evidence that PVY(N)W and PVY(NTN) variants are single to multiple recombinants between PVY(O) and PVY(N) isolates. Archives of Virology, 147, 363–78.

    Article  CAS  PubMed  Google Scholar 

  • Goldbach, R., Bucher, E., & Prins, M. (2003). Resistance mechanisms to plant viruses: an overview. Virus Research, 92, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, I. R., Zhang, X., Lu, C., Johnson, L., Meyers, B. C., Green, P. J., et al. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genetics, 38, 721–5.

    Article  CAS  PubMed  Google Scholar 

  • Ho, T., Wang, H., Pallett, D., & Dalmay, T. (2007). Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Letters, 581, 3267–72.

    Article  CAS  PubMed  Google Scholar 

  • Ho, T., Rusholme Pilcher, R. L., Edwards, M. L., Cooper, I., Dalmay, T., & Wang, H. (2008). Evidence for GC preference by monocot Dicer-like proteins. Biochemical and Biophysical Research Communications, 368, 433–7.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, R. A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  • Kalantidis, K., Psaradakis, S., Tabler, M., & Tsagris, M. (2002). The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Molecular Plant-Microbe Interactions, 15, 826–33.

    Article  CAS  PubMed  Google Scholar 

  • Kreuze, J. F., Klein, I. S., Lazaro, M. U., Chuquiyuri, W. J., Morgan, G. L., Mejia, P. G., et al. (2008). RNA silencing-mediated resistance to a crinivirus (Closteroviridae) in cultivated sweet potato (Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus. Molecular Plant Pathology, 9, 589–98.

    Article  CAS  PubMed  Google Scholar 

  • Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I., et al. (2009). Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology, 388, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Mendoza, E., Lopez-Meyer, M., & Nessler, C. L. (1996). Transformation of tobacco and carrot using Agrobacterium tumefaciens and expression of the β-glucuronidase (GUS) reporter gene. In R. N. Trigano & D. J. Gray (Eds.), Plant tissue culture concepts and laboratory exercises. Boca Raton: CRC. Chapter 30.

    Google Scholar 

  • Missiou, A., Kalantidis, K., Boutla, A., Tzortzakaki, S., Tabler, M., & Tsagris, M. (2004). Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Molecular Breeding, 14, 185–197.

    Article  CAS  Google Scholar 

  • Mlotshwa, S., Pruss, G. J., & Vance, V. (2008). Small RNAs in viral infection and host defense. Trends in Plant Science, 13, 375–82.

    Article  CAS  PubMed  Google Scholar 

  • Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C., & Burgyan, J. (2005). Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. Journal of Virology, 79, 7812–8.

    Article  CAS  PubMed  Google Scholar 

  • Pall, G. S., Codony-Servat, C., Byrne, J., Ritchie, L., & Hamilton, A. (2007). Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Research, 35, e60.

    Article  PubMed  Google Scholar 

  • Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., & Tepfer, M. (2008). Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 9, 73–83.

    CAS  PubMed  Google Scholar 

  • Qi, X., Bao, F. S., & Xie, Z. (2009). Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE, 4, e4971.

    Article  PubMed  Google Scholar 

  • Romero, A., Blanco-Urgoiti, B., Soto, M. J., Fereres, A., & Ponz, F. (2001). Characterization of typical pepper-isolates of PVY reveals multiple pathotypes within a single genetic strain. Virus Research, 79, 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Rosner, A., & Maslenin, L. (2006). Nucleotide sequence variability at the 5′-UTR of Potato PVY isolates. Potato Research, 49, 217–224.

    Article  CAS  Google Scholar 

  • Ruiz-Ferrer, V., & Voinnet, O. (2009). Roles of plant small RNAs in biotic stress responses. Annual Review of Plant Biology, 60, 485–510.

    Article  CAS  PubMed  Google Scholar 

  • Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., et al. (2007). The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. Journal of Virology, 81, 13135–48.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P., Valkonen, J. P., Gray, S. M., Boonham, N., Jones, R. A., Kerlan, C., et al. (2008). Discussion paper: the naming of Potato virus Y strains infecting potato. Archives of Virology, 153, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., & Waterhouse, P. M. (2000). Total silencing by intron-spliced hairpin RNAs. Nature, 407, 319–20.

    Article  CAS  PubMed  Google Scholar 

  • Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., et al. (2003). Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. The EMBO Journal, 22, 633–40.

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren, H., Alder, A., Zhang, P., & Gruissem, W. (2009). Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Molecular Biology, 70, 265–72.

    Article  CAS  PubMed  Google Scholar 

  • Voinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews. Genetics, 6, 206–220.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Gaba, V., Wolf, D., Xia, X. D., Zelcer, A., & Gal-On, A. (2000). Identification of a novel plant virus promoter using a potyvirus infectious clone. Virus Genes, 20, 11–17.

    Article  PubMed  Google Scholar 

  • Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., et al. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27, 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Yuan, Y. R., Pei, Y., Lin, S. S., Tuschl, T., Patel, D. J., et al. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 20, 3255–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 511/08. The authors would like to thank the Israeli Ministry of Foreign Affairs for support to E. Kukurt, Dr. D. Shteinberg for statistical advice, Dr. T. Arazi for comments on the manuscript, and Dr. M. Lapidot for the tomato and pepper PVY strains. This work was supported in part by grants from the Chief Scientist's Office, Ministry of Agriculture, and the United States-Israel Binational Agricultural Research and Development Fund (BARD) (grant USA 3623-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gaba.

Additional information

Victor Gaba and Arie Rosner have contributed equally to this publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaba, V., Rosner, A., Maslenin, L. et al. Hairpin-based virus resistance depends on the sequence similarity between challenge virus and discrete, highly accumulating siRNA species. Eur J Plant Pathol 128, 153–164 (2010). https://doi.org/10.1007/s10658-010-9654-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9654-5

Keywords

Navigation