Skip to main content
Log in

Fusarium species complex on maize in Switzerland: occurrence, prevalence, impact and mycotoxins in commercial hybrids under natural infection

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The Fusarium species complex of maize kernels and stem pieces as well as mycotoxin contamination of commercial grain maize hybrids for animal feed were evaluated in Switzerland. Throughout 2 years, natural Fusarium infection varied significantly between the years and the locations and it ranged from 0.4% to 49.7% for kernels and from 24.2% to 83.8% for stem pieces. Using the agar plate method, 16 different Fusarium species were isolated from kernels and 15 from stem pieces. The Fusarium species composition, prevalence and impact differed between the north and the south and between kernel and stem piece samples. The dominant species on kernels in the north were F. verticillioides (32.9%), F. graminearum (31.3%), F. proliferatum (7.3%) and F. crookwellense (7.1%), in the south F. verticillioides (57.1%), F. subglutinans (24.6%), F. proliferatum (14.8%) and F. graminearum (1.5%) and on stem pieces F. equiseti (36.0%), F. verticillioides (20.1%), F. graminearum (9.5%), F. crookwellense (6.2%) and F. subglutinans (6.2%). In the south, fumonisin concentration of most hybrids exceeded guidance values for animal feed. Other Fusarium species isolated were F. avenaceum, F. culmorum, F. oxysporum, F. poae, F. sambucinum, F. semitectum, F. sporotrichioides, F. solani, F. tricinctum and F. venenatum. Maize hybrids varied in their susceptibility to Fusarium infection. Because of the high diversity of Fusarium species encountered in Switzerland representing a high toxigenic potential, we propose to screen maize hybrids for resistance against various Fusarium species and examine maize produce for several mycotoxins in order to ensure feed safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afolabi, C. G., Ojiambo, P. S., Ekpo, E. J. A., Menkir, A., & Bandyopadhyay, R. (2007). Evaluation of maize inbred lines for resistance to Fusarium ear rot and fumonisin accumulation in grain in tropical Africa. Plant Disease, 91, 279–286. doi:10.1094/PDIS-91-3-0279.

    Article  CAS  Google Scholar 

  • Ares, J. L. A., Ferro, R. C. A., Ramìrez, L. C., & González, J. M. (2004). Fusarium graminearum Schwabe, a maize root and stalk rot pathogen isolated from lodged plants in northwest Spain. Spanish Journal of Agricultural Research, 2, 249–252.

    Google Scholar 

  • Botallico, A. (1998). Fusarium diseases of cereals: Species complex and related mycotoxins profiles, in Europe. Journal of Plant Pathology, 80, 85–103.

    Google Scholar 

  • Camargos, S. M., Valente Soares, L. M., Sawazaki, E., Bolonhezi, D., Castro, J. L., & Bortolleto, N. (2001). Accumulation of fumonisins B1 and B2 in freshly harvested Brazilian commercial maize at three locations during two non-consecutive seasons. Mycopathologia, 155, 219–228. doi:10.1023/A:1021167925337.

    Article  Google Scholar 

  • CAST (2003). Mycotoxins: Risks in plant, animal, and human systems. Task force report no. 139. Ames: Council for Agricultural Science and Technology.

    Google Scholar 

  • Chelkowsi, J. (1998). Distribution of Fusarium species and their mycotoxins in cereal grains. In K. K. Sinha, & D. Bhatnagar (Eds.), Mycotoxins in agriculture and food safety (pp. 45–64). New York: Marcel Dekker.

    Google Scholar 

  • Cotton, T. K., & Munkvold, G. P. (1998). Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residues. Phytopathology, 88, 550–555. doi:10.1094/PHYTO.1998.88.6.550.

    Article  Google Scholar 

  • Desjardins, A. E. (2006). Fusarium mycotoxins, chemistry, genetics, and biology. St. Paul: APS.

  • di Menna, M. E., Lauren, D. R., & Hardacre, A. (1997). Fusarium and Fusarium toxins in New Zealand maize plants. Mycopathologia, 139, 165–173. doi:10.1023/A:1006863908275.

    Article  PubMed  Google Scholar 

  • Dodd, J. L. (1980). The role of plant stresses in development of corn stalk rots. Plant Disease, 64, 533–537.

    Google Scholar 

  • Dowd, P. F., Johnson, E. T., & Williams, W. P. (2005). Strategies for insect management targeted toward mycotoxin management. In H. K. Abbas (Ed.), Aflatoxin and food safety (pp. 517–541). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Jestoi, M. (2008). Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin - a review. Critical Reviews in Food Science and Nutrition, 48, 21–49. doi:10.1080/10408390601062021.

    Article  PubMed  CAS  Google Scholar 

  • Kubena, L. F., Edrington, T. S., Harvey, R. B., Buckley, S. A., Phillips, T. D., Rottinghaus, G. E., & Casper, H. H. (1997). Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and T-2 toxin or deoxynivalenol in broiler chicks. Poultry Science, 76, 1239–1247.

    PubMed  CAS  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Ames: Blackwell Publishing.

    Book  Google Scholar 

  • Logrieco, A., Mulè, G., Moretti, A., & Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal of Plant Pathology, 108, 597–609. doi:10.1023/A:1020679029993.

    Article  CAS  Google Scholar 

  • Mansfield, M. A., & Kuldau, G. A. (2007). Microbiological and molecular determination of mycobiota in fresh and ensiled maize silage. Mycologia, 99, 269–278. doi:10.3852/mycologia.99.2.269.

    Article  PubMed  CAS  Google Scholar 

  • Mansfield, M. A., de Wolf, E. D., & Kuldau, G. A. (2005). Relationships between weather conditions, agronomic practices, and fermentation characteristics with deoxynivalenol content in fresh and ensiled maize. Plant Disease, 89, 1151–1157. doi:10.1094/PD-89-1151.

    Article  CAS  Google Scholar 

  • Mansfield, M. A., Archibald, D. D., Jones, A. D., & Kuldau, G. A. (2007). Relationship of sphinganine analog mycotoxins contamination in maize silage to seasonal weather conditions and to agronomic ensiling practices. Phytopathology, 97, 504–511. doi:10.1094/PHYTO-97-4-0504.

    Article  PubMed  CAS  Google Scholar 

  • Menzi, A., Buchmann, U., Collaud, J. F., & Bertossa, A. (2006). Liste der empfohlenen Maissorten für die Ernte 2006. Agrarforschung, 13, Supplement.

  • Munkvold, G. P. (2003a). Cultural and genetic approaches to managing mycotoxins in maize. Annual Review of Phytopathology, 41, 99–116. doi:10.1146/annurev.phyto.41.052002.095510.

    Article  PubMed  CAS  Google Scholar 

  • Munkvold, G. P. (2003b). Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109, 705–713. doi:10.1023/A:1026078324268.

    Article  CAS  Google Scholar 

  • Munkvold, G. P., McGee, D. C., & Carlton, W. M. (1997). Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology, 87, 209–217. doi:10.1094/PHYTO.1997.87.2.209.

    Article  PubMed  CAS  Google Scholar 

  • Naef, N., & Défago, G. (2006). Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. European Journal of Plant Pathology, 116, 126–143. doi:10.1007/s10658-006-9048-x.

    Article  Google Scholar 

  • Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species, an illustrated manual for identification. University Park: The Pennsylvania State University Press.

  • Papavizas, G. C. (1967). Evaluation of various media and antimicrobial agents for isolation for Fusarium from soil. Phytopathology, 57, 848–852.

    Google Scholar 

  • Presello, D. A., Iglesias, J., Botta, G., Reid, L. M., Lori, G. A., & Eyhérabide, G. H. (2006). Stability of maize resistance to the ear rots by Fusarium graminearum and F. verticillioides in Argentina and Canadian environments. Euphytica, 147, 402–407. doi:10.1007/s10681-005-9037-8.

    Article  Google Scholar 

  • Reid, L. M., Nicol, R. W., Ouellet, T., Savard, M., Miller, J. D., Young, J. C., Stewart, D. W., & Schaafsma, A. W. (1999). Interaction of Fusarium graminearum and F. moniliforme in maize ears: disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology, 89, 1028–1037. doi:10.1094/PHYTO.1999.89.11.1028.

    Article  PubMed  CAS  Google Scholar 

  • Salas, B., & Dill-Macky, R. (2004). Incidence of Fusarium graminearum in pre-harvest and overwintered residues of wheat cultivars differing in Fusarium head blight-resistance. Proceedings of the 2nd International Symposium on Fusarium Head Blight. 11–15 December, 2004. Orlando, USA.

  • Schaafsma, A. W., & Hooker, D. C. (2007). Climatic models to predict occurrence of Fusarium toxins in wheat and maize. International Journal of Food Microbiology, 119, 116–125. doi:10.1016/j.ijfoodmicro.2007.08.006.

    Article  PubMed  CAS  Google Scholar 

  • Singh, K., Frisvad, J. C., Thrane, U., & Mathur, S. B. (1991). An illustrated manual on identification of some seed-borne Aspergilli, Fusarium, Penicillia and their mycotoxins. Denmark: Jordbrugsforlaget Frederiksberg.

  • Speijers, G. J. A., & Speijers, M. H. M. (2004). Combined toxic effects of mycotoxins. Toxicology Letters, 153, 91–98. doi:10.1016/j.toxlet.2004.04.046.

    Article  PubMed  CAS  Google Scholar 

  • Statcon (2006). SigmaStat 3-5. Witzenhausen, Germany: B. Schäfer GbR.

  • Stewart, D. W., Reid, L. M., Nicol, R. W., & Schaafsma, A. W. (2002). A mathematical simulation of growth of Fusarium in maize ears after artificial inoculation. Phytopathology, 92, 543–541. doi:10.1094/PHYTO.2002.92.5.534.

    Article  Google Scholar 

  • Vigier, B., Reid, L. M., Seifert, K. A., Stewart, D. W., & Hamilton, R. I. (1997). Distribution and prediction of Fusarium species associated with maize ear rot in Ontario. Canadian Journal of Plant Pathology, 19, 60–65.

    Google Scholar 

  • Vigier, B., Reid, L. M., Dwyer, L. M., Stewart, D. W., Sinha, R. C., Arnson, J. T., & Butler, G. (2001). Maize resistance to Gibberella ear rot: symptoms, deoxynivalenol, and yield. Canadian Journal of Plant Pathology, 23, 99–105.

    CAS  Google Scholar 

  • Wilkinson, J. M. (1999). Silage and animal health. Natural Toxins, 7, 221–232. doi:10.1002/1522-7189(199911/12)7:6<221::AID-NT76>3.0.CO;2-H.

    Article  PubMed  CAS  Google Scholar 

  • Wu, F. (2007). Measuring the economic impacts of Fusarium toxins in animal feeds. Animal Feed Science and Technology, 137, 363–374. doi:10.1016/j.anifeedsci.2007.06.010.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1996). Biostatistical analysis (3rd). New Jersey: Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

We thank M. Menzi (Agroscope ART) and M. Müller (Plant Protection Office, ct. AG) for financial support, U. Buchmann and J. F. Collaud for managing the maize variety trials and T. Musa (ART) for calculating the weather data. We also appreciate excellent technical assistance by: L. de Baan, D. Bünter, C. Eichenberger, G. Gianini, A. Hecker, H. J. Hendricks Franssen, E. Jenny, S. Märki, S. Roffler and F. Schwab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Vogelgsang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, B., Forrer, HR., Schürch, S. et al. Fusarium species complex on maize in Switzerland: occurrence, prevalence, impact and mycotoxins in commercial hybrids under natural infection. Eur J Plant Pathol 125, 51–61 (2009). https://doi.org/10.1007/s10658-009-9457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9457-8

Keywords

Navigation