Skip to main content

Advertisement

Log in

Reduced BYDV–PAV transmission by the grain aphid in a Triticum monococcum line

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The luteovirus Barley yellow dwarf virus–PAV (BYDV–PAV) and its vector, the aphid Sitobion avenae are two major sources of yield losses in cereal crops. We report in this paper the effects of a Triticum monococcum line (TM44), resistant by antibiosis to S. avenae, on the different steps of transmission of one BYDV–PAV isolate by the aphids. First, it was shown that TM44 is strongly resistant to BYDV–PAV transmission, but exclusively when S. avenae is the vector. Second, that TM44 is resistant (1) to BYDV–PAV acquisition by S. avenae and (2) to its inoculation, whatever the respective duration of these two periods. Third, that both resistances have partially additive effects. In the discussion, several lines of evidence are given to support the hypothesis that resistance of TM44 to PAV transmission is due to the same disturbances to S. avenae feeding behaviour that are involved in its antibiosis against this aphid species. Reasons for caution in releasing resistant material in the field are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Caillaud, C. M., Dedryver, C.-A., Di Piétro, J.-P., Simon, J.-C., Fima, F., & Chaubet, B. (1995b). Clonal variability in the response of Sitobion avenae (Homoptera: Aphididae) to resistant and susceptible wheat. Bulletin of Entomological Research, 85, 189–195.

    Article  Google Scholar 

  • Caillaud, C. M., Dedryver, C.-A., & Simon, J.-C. (1994). Development and reproductive potential of the cereal aphid Sitobion avenae on resistant wheat lines (Triticum monococcum). The Annals of Applied Biology, 125, 219–232. doi:10.1111/j.1744-7348.1994.tb04964.x.

    Article  Google Scholar 

  • Caillaud, C. M., Pierre, J.-S., Chaubet, B., & Di Piétro, J.-P. (1995a). Analysis of wheat resistance to the cereal aphid Sitobion avenae using electrical penetration graphs and flow charts combined with correspondence analysis. Entomologia Experimentalis et Applicata, 75, 9–18. doi:10.1007/BF02382774.

    Article  Google Scholar 

  • Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2006). Evaluation of the durability of the Barley yellow dwarf virus-resistant Zhong ZH and TC14 wheat lines. European Journal of Plant Pathology, 117, 35–43. doi:10.1007/s10658-006-9066-8.

    Article  Google Scholar 

  • Chen, J., Delobel, B., Rahbé, Y., & Sauvion, N. (1996). Biological and chemical characteristics of a genetic resistance of melon to the melon aphid. Entomologia Experimentalis et Applicata, 80, 250–253. doi:10.1007/BF00194768.

    Article  Google Scholar 

  • D’Arcy, C. J., & Mayo, M. (1997). Proposal for changes in luteovirus taxonomy and nomenclature. Archives of Virology, 142, 1285–1287.

    PubMed  CAS  Google Scholar 

  • Dedryver, C. - A., Riault, G., Tanguy, S., Le Gallic, J. - F., Trottet, M., & Jacquot, E. (2005). Intra-specific variation and inheritance of BYDV–PAV transmission in the aphid Sitobion avenae. European Journal of Plant Pathology, 111, 341–354. doi:10.1007/s10658-004-4890-1.

    Article  Google Scholar 

  • Di Piétro, J.-P., Caillaud, C. M., Chaubet, B., Pierre, J.-S., & Trottet, M. (1998). Variation in resistance to the grain aphid, Sitobion avenae (Sternorhyncha: Aphididae), among diploid wheat genotypes: multivariate analysis of agronomic data. Plant Breeding, 117, 407–412. doi:10.1111/j.1439-0523.1998.tb01964.x.

    Article  Google Scholar 

  • Givovitch, A., & Niemeyer, H. M. (1991). Hydroxamic acids affecting barley yellow dwarf transmission by the aphid Rhopalosiphum padi. Entomologia Experimentalis et Applicata, 59, 79–85. doi:10.1007/BF00187969.

    Article  Google Scholar 

  • Haley, S. D., Peairs, F. B., Walker, C. B., Rudolph, J. B., & Randolph, T. L. (2004). Occurrence of a new Russian wheat aphid biotype in Colorado. Crop Science, 44, 1589–1592.

    Google Scholar 

  • Insightful Corporation (2002). S-Plus 6.2. Seattle, WA, USA.

  • Jones, A. T. (1987). Control of virus infection in crop plants through vector resistance: a review of achievements, prospects and problems. The Annals of Applied Biology, 111, 745–772. doi:10.1111/j.1744-7348.1987.tb02033.x.

    Article  Google Scholar 

  • Laurence, J., & Banks, P. (2003). Virus-resistant wheats worth the wait. Partners in Research for Development, 15, 37–40.

    Article  Google Scholar 

  • Leclercq-Le Quillec, F., Tanguy, S., & Dedryver, C.-A. (1995). Aerial flow of barley yellow dwarf viruses and of their vectors in western France. The Annals of Applied Biology, 126, 75–90. doi:10.1111/j.1744-7348.1995.tb05004.x.

    Article  Google Scholar 

  • Lecoq, H., Moury, B., Desbiez, C., Palloix, P., & Pitrat, M. (2004). Durable virus resistance in plants through conventional approaches: a challenge. Virus Research, 100, 31–39. doi:10.1016/j.virusres.2003.12.012.

    Article  PubMed  CAS  Google Scholar 

  • Lecoq, H., & Pitrat, M. (1982). Effect on Cucumber mosaic virus incidence of the cultivation of partially resistant muskmelon cultivars. Acta Horticulturae, 127, 137–145.

    Google Scholar 

  • Lister, R. M., & Ranieri, R. (1997). Distribution and economic importance of Barley Yellow Dwarf. In C. J. D’Arcy, & P. Burnett (Eds.), Barley yellow dwarf: 40 years of progress (pp. 29–53). St Paul, USA: APS Press.

    Google Scholar 

  • Lucio-Zavaleta, E., Smith, D. M., & Gray, S. M. (2001). Variation in transmission efficiency among Barley yellow dwarf virus–RMV isolates and clones of the normally inefficient aphid vector, Rhopalosiphum padi. Phytopathology, 91, 792–796. doi:10.1094/PHYTO.2001.91.8.792.

    Article  PubMed  CAS  Google Scholar 

  • Martin, B., Rahbé, Y., & Ferreres, A. (2003). Blockage of stylet tips as the mechanism of resistance to virus transmission by Aphis gossypii in melon lines bearing the Vat gene. The Annals of Applied Biology, 142, 245–250. doi:10.1111/j.1744-7348.2003.tb00247.x.

    Article  CAS  Google Scholar 

  • Niemeyer, H. M. (1991). Secondary plant compounds in aphid-host interactions. In R. K. Campbell, & R. D. Eikenbary (Eds.), Aphid–plant genotype interactions (pp. 101–114). New York, USA: Elsevier.

    Google Scholar 

  • Palloix, A., Daubèze, A. M., Lefebvre, V., Caranta, C., Moury, B., Pflieger, S., et al. (1997). Construction de systèmes de résistance aux maladies adaptés aux conditions de culture chez le piment. Comptes-Rendus de l’Académie d’Agriculture de France, 83, 87–98.

    Google Scholar 

  • Plumb, R. T. (1995). Epidemiology of barley yellow dwarf in Europe. In C. J. D’Arcy, & P. A. Burnett (Eds.), Barley yellow dwarf 40 years of progress (pp. 107–127). St Paul, MN, USA: APS Press.

    Google Scholar 

  • Prado, E., & Tjallingii, W. F. (1994). Aphid activities during sieve element punctures. Entomologia Experimentalis et Applicata, 72, 157–165. doi:10.1007/BF02383550.

    Article  Google Scholar 

  • Puterka, G. J., & Peters, D. C. (1990). Sexual reproduction and the inheritance of virulence in the greenbug, Schizaphis graminum (Rondani). In R. K. Campbell & R. D. Eikenbary (Ed.), Aphid-plant genotype interactions (pp. 289–318). New York, USA: Elsevier.

    Google Scholar 

  • Rasmusson, D. C., & Schaller, C. W. (1959). The inheritance of resistance in barley to the yellow-dwarf virus. Agronomy Journal, 51, 661–664.

    Google Scholar 

  • Shukle, R. H., Lampe, D. J., Lister, R. M., & Foster, J. E. (1987). Aphid feeding behavior: Relationship to Barley yellow dwarf virus resistance in Agropyron species. Phytopathology, 77, 725–729. doi:10.1094/Phyto-77-725.

    Article  Google Scholar 

  • Smith, C. M. (1989). Plant resistance to insects: A fundamental approach. New York, USA: Wiley.

    Google Scholar 

  • Tatchell, G. M. (1989). An estimate of the potential economic losses to some crops due to aphids in Britain. Crop Protection (Guildford, Surrey), 8, 25–29. doi:10.1016/0261-2194(89)90095-1.

    Article  Google Scholar 

  • Tjallingii, W. F. (1988). Electrical recording of stylet penetration activities by aphids. In A. K. Minks, & P. Harrewijn (Eds.), Aphids their biology, natural enemies and control (vol. 2B, (pp. 95–108)). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Torrance, L., Pead, M. T., Larkins, A. P., & Butcher, G. W. (1986). Characterization of monoclonal antibodies to a U.K. isolate of Barley yellow dwarf virus. The Journal of General Virology, 67, 549–556. doi:10.1099/0022-1317-67-3-549.

    Article  CAS  Google Scholar 

  • Webster, J. A. (1991). Developing aphid-resistant cultivars. In R. K. Campbell, & R. D. Eikenbary (Eds.), Aphid–plant genotype interactions (pp. 87–100). New York, USA: Elsevier.

    Google Scholar 

  • Wood, E. A., Sebest, E. E., Webster, J. A., & Porter, D. R. (1995). Resistance to wheat curl mite (Acari: Eriophydidae) in greenbug-resistant ‘Gaucho’ triticale and ‘Gaucho × wheat crosses. Journal of Economic Entomology, 88, 1032–1036.

    Google Scholar 

Download references

Acknowledgement

We are grateful to M. Trottet (UMR APBV, INRA Le Rheu) for providing TM44 seeds and making useful comments on the manuscript, and to Monique Henry (Clause, Angers) for scientific advice and improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-A. Dedryver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanguy, S., Dedryver, CA. Reduced BYDV–PAV transmission by the grain aphid in a Triticum monococcum line. Eur J Plant Pathol 123, 281–289 (2009). https://doi.org/10.1007/s10658-008-9365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9365-3

Keywords

Navigation