Skip to main content
Log in

Spatio-temporal distribution of Erysiphe necator genetic groups and their relationship with disease levels in vineyards

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The discovery of genetically distinct Erysiphe necator groups (A or B), with high phenotypic similarities, raises important questions about their coexistence. For plant pathogens, niche partitioning, allowing the coexistence on the same host (i.e. the same resource), might result from separation in space and/or time. We used a landscape genetic approach to study the geographic distribution of genetic groups of E. necator (distinguished by a SNP in the β-tubulin gene) at the spatial scale of the Languedoc-Roussillon region (southern France) and to assess the temporal succession of groups along the course of the 2007 epidemic. Spatial distribution revealed a high heterogeneity between vineyards: from 100% B to 100% A, with 62% and 38% of vineyards showing a majority of A and B isolates, respectively. Temporal isolation seems to be the major mechanism in the coexistence of the two genetic groups: all isolates collected towards the end of the epidemic belonged to group B, whatever the initial frequency of genetic groups. Our results confirm that both A or B isolates can lead to flag-shoot symptoms, and showed that group A isolates tend to disappear during the course of the epidemic, whereas group B isolates may be active during the entire epidemic and involved in further production of cleistothecia, when recombination takes place. For the first time, the relationship between the frequency of genetic groups and disease levels on leaves and clusters at the end of the epidemic was evaluated. We showed a strong relationship between the disease severity and the genetic composition of E. necator populations: the damage was more important when the epidemic was initiated by B isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: A synthesis. Ecology Letters, 6, 1109–1122.

    Article  Google Scholar 

  • Amrani, L., & Corio-Costet, M. F. (2006). A single nucleotide polymorphism in the beta-tubulin gene distinguishing two genotypes of Erysiphe necator expressing different symptoms on grapevine. Plant Pathology, 55, 505–512.

    Article  CAS  Google Scholar 

  • Baudoin, A., Olaya, G., Delmotte, F., Colcol, J. F., & Sierotzki, H. (2008). QoI resistance of Plasmopara viticola and Erysiphe necator in the mid-Atlantic United States. Plant Health Progress. doi:10.1094/PHP-2008-0211-02-RS.

  • Bouscaut, J., & Corio-Costet, M. F. (2007). Detection of a specific transposon in Erysiphe necator from grapevines in France. Journal of Phytopathology, 155, 81–383.

    Article  Google Scholar 

  • Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.

    Article  Google Scholar 

  • Cortesi, P., Mazzoleni, A., Pizzatti, C., & Milgroom, M. G. (2005). Genetic similarity of flag shoot and ascospore subpopulations of Erysiphe necator in Italy. Applied and Environmental Microbiology, 71, 7788–7791.

    Article  PubMed  CAS  Google Scholar 

  • Cortesi, P., Ottaviani, M. P., & Milgroom, M. G. (2004). Spatial and genetic analysis of flag shoot subpopulation of Erysiphe necator in Italy. Phytopathology, 94, 544–550.

    Article  PubMed  CAS  Google Scholar 

  • Cortesi, P., Pizzatti, C., Bertocchi, D., & Milgroom, M. G. (2008). Persistence and spatial autocorrelation of clones of Erysiphe necator overwintering as mycelium in dormant buds in an isolated vineyard in Northern Italy. Phytopathology, 98, 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Délye, C., & Corio-Costet, M. F. (1998). Origin of primary infections of grape by Uncinula necator: RAPD analysis discriminates two biotypes. Mycological Research, 102, 283–288.

    Article  Google Scholar 

  • Délye, C., Laigret, F., & Corio-Costet, M. F. (1997). RAPD analysis provides insight into the biology and epidemiology of Uncinula necator. Phytopathology, 87, 670–677.

    Article  PubMed  Google Scholar 

  • Délye, C., Ronchi, V., Laigret, F., & Corio-Costet, M. F. (1999). Nested allele-specific PCR primers distinguish genetic groups of Uncinula necator. Applied and Environmental Microbiology, 65, 3950–3954.

    PubMed  Google Scholar 

  • Doster, M. A., & Schnathorst, W. C. (1985). Effects of leaf maturity and cultivar resistance on development of the powdery mildew fungus on grapevines. Phytopathology, 75, 318–321.

    Article  Google Scholar 

  • Evans, K. J., Whisson, D. L., Stummer, B. E., & Scott, E. S. (1997). DNA markers identify variation in Australian populations of Uncinula necator. Mycological Research, 101, 923–932.

    Article  CAS  Google Scholar 

  • Fitt, B. D. L., Huang, Y. J., van den Bosch, F., & West, J. S. (2006). Coexistence of related pathogen species on arable crops in space and time. Annual Review of Phytopathology, 44, 163–182.

    Article  PubMed  CAS  Google Scholar 

  • Fournier, E., Giraud, T., Albertini, C., & Brygoo, Y. (2005). Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia, 97, 1251–1267.

    Article  PubMed  CAS  Google Scholar 

  • Gadoury, D. M., & Pearson, R. C. (1988). Initiation, development, dispersal and survival of cleistothecia of Uncinula necator in New York vineyards. Phytopathology, 78, 1413–1421.

    Article  Google Scholar 

  • Gadoury, D. M., Seem, R. C., Ficke, A., & Wilcox, W. F. (2003). Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93, 547–555.

    Article  PubMed  Google Scholar 

  • Gausse, G. F. (1934). The struggle for existence. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Laine, A. L., & Hanski, I. (2006). Large-scale spatial dynamics of a specialist plant pathogen in a landscape. Journal of Ecology, 94, 217–226.

    Article  Google Scholar 

  • Lebreton, L., Gosme, M., Lucas, P., Guillerm-Erckelboudt, A. Y., & Sarniguet, A. (2007). Linear relationship between Gaeumannomyces graminis var. tritici (Ggt) genotypic frequencies and disease severity on wheat roots in the field. Environmental Microbiology, 9, 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Lebreton, L., Lucas, P., Dugas, F., Guillerm, A.-Y., Schoeny, A., & Sarniguet, A. (2004). Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping. Environmental Microbiology, 6, 1174–1185.

    Article  PubMed  Google Scholar 

  • Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology & Evolution, 18, 189–197.

    Article  Google Scholar 

  • Miazzi, M., Hajjeh, H., & Faretra, F. (2003). Observations on the population biology of the grape powdery mildew fungus Uncinula necator. Journal of Plant Pathology, 85, 123–129.

    CAS  Google Scholar 

  • Nuñez, Y., Gallego, J., Ponz, F., & Raposo, R. (2006). Analysis of population structure of Erysiphe necator using AFLP markers. Plant Pathology, 55, 650–656.

    Article  Google Scholar 

  • Pearson, R. C., & Gärtel, W. (1985). Occurrence of hyphae of Uncinula necator in buds of grapevine. Plant Disease, 69, 149–151.

    Article  Google Scholar 

  • Péros, J. P., Troulet, C., Guerriero, M., Michel-Romiti, C., & Notteghem, J. L. (2005). Genetic variation and population structure of the grape powdery mildew fungus, Erysiphe necator, in southern France. European Journal of Plant Pathology, 113, 407–416.

    Article  Google Scholar 

  • Plantegenest, M., Le May, C., & Fabre, F. (2007). Landscape epidemiology of plant diseases. Journal of the Royal Society Interface, 4, 963–972.

    Article  Google Scholar 

  • Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., & Bini, L. M. (2006). Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 15, 321–327.

    Article  Google Scholar 

  • Seko, Y., Bolay, A., Kiss, L., Heluta, V., Grigaliunaite, B., & Takamatsu, S. (2008). Molecular evidence in support of recent migration of a powdery mildew fungus on Syringa spp. Into Europe from East Asia. Plant Pathology, 57, 243–250, doi:10.1111/j.1365-3059.2007.01775.x.

    Article  CAS  Google Scholar 

  • Stummer, B. E., & Scott, E. S. (2003). Detection of novel genotypes in progeny from a controlled cross between isolates of Uncinula necator belonging to distinct phonetic groups. Australian Plant Pathology, 32, 213–218.

    Article  CAS  Google Scholar 

  • Tattersall, E. A. R., Ergul, A., Alkayal, F., DeLuc, L., Cushman, J. C., & Cramer, G. R. (2005). Comparison of methods for isolating high-quality RNA from leaves of grapevine (Vitis vinifera L.). American Journal of Enology and Viticulture, 56, 400–406.

    CAS  Google Scholar 

  • Thrall, P. H., & Burdon, J. J. (1997). Host–pathogen dynamics in a metapopulation context: the ecological and evolutionary consequences of being spatial. Journal of Ecology, 85, 743–753.

    Article  Google Scholar 

  • Williams, R. H., & Fitt, B. D. L. (1999). Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathology, 48, 161–175.

    Article  Google Scholar 

  • Willocquet, L., Cartolaro, P., Jolivet, J., Richard-Cervera, S., & Delmotte, F. (2007). Relationships between genetic group, symptom type, and epidemiological features in Erysiphe necator, the causal agent of grape powdery mildew. Phytopathology, 97(Suppl.), S123.

    Google Scholar 

  • Wilson, M., & Lindow, S. E. (1994). Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Applied and Environmental Microbiology, 60, 4468–4477.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to L. Willocquet, D. Andrivon, M.L. Desprez-Lousteau, A. Calonnec and two anonymous referees for valuable comments on previous versions of this paper. This work was carried out within the frame of a research project (no. 20061202001) supported by the Région Aquitaine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josselin Montarry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montarry, J., Cartolaro, P., Richard-Cervera, S. et al. Spatio-temporal distribution of Erysiphe necator genetic groups and their relationship with disease levels in vineyards. Eur J Plant Pathol 123, 61–70 (2009). https://doi.org/10.1007/s10658-008-9343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9343-9

Keywords

Navigation