Skip to main content
Log in

Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The response of microconidia from pathogenic and non-pathogenic Fusarium oxysporum to root exudates from tomato plants inoculated with different pathogenic and non-pathogenic F. oxysporum strains was studied. Root exudates from non-inoculated tomatoes highly stimulated the microconidial germination of the two tomato pathogens, F. oxysporum f.sp. lycopersici strain Fol 007 and F. oxysporum f.sp. radicis-lycopersici strain Forl 101587. In root exudates from tomato plants challenged with the pathogen Fol 007 the microconidial germination of Fol 007 was increased, whereas in root exudates from plants challenged with Forl 101587 the microconidial germination of Fol 007 was reduced. Root exudates of tomato plants challenged with the non-pathogenic unspecific F. oxysporum strain Fo 135 and the biocontrol strain Fo 47 clearly reduced microconidial germination of the pathogenic strain Forl 101587. Moreover, the microconidial germination rate of the biocontrol strain Fo 47 was increased in the presence of root exudates of tomato plants challenged with the tomato wilt pathogen Fol 007. These results indicate that pathogenic and non-pathogenic F. oxysporum strains alter the root exudation of tomato plants differently and consequently the fungal propagation of pathogenic and non-pathogenic F. oxysporum strains in the rhizosphere is affected differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alabouvette, C. (1990). Biological control of Fusarium wilt pathogens in suppressive soils. In D. Hornby (Ed.) Biological control of plant pathogens (pp. 27–43). Wallingford: CAB.

    Google Scholar 

  • Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: The European situation. European Journal of Plant Pathology, 114, 329–341.

    Article  Google Scholar 

  • Armstrong, G. M., & Armstrong, J. K. (1981). Formae speciales and races of Fusarium oxysporum causing wilt diseases. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.) Fusarium: Diseases, biology and taxonomy (pp. 392–399). University Park: The Pennsylvania State University Press.

    Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  PubMed  CAS  Google Scholar 

  • Bertin, C., Yang, X., & Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256, 67–83.

    Article  CAS  Google Scholar 

  • Bolwerk, A., Lagopodi, A. L., Lugtenberg, B. J. J., & Bloemberg, G. V. (2005). Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Molecular Plant Microbe Interactions, 18, 710–721.

    Article  PubMed  CAS  Google Scholar 

  • Fravel, D., Olivain, C., & Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157, 493–502.

    Article  Google Scholar 

  • He, C., Hsiang, T., & Wolyn, D. J. (2001). Activation of defence responces to Fusarium infection in Asparagus densiflorus. European Journal of Plant Pathology, 107, 473–483.

    Article  CAS  Google Scholar 

  • Hochmuth, G. J., & Hochmuth, R. (2003). Keys to successful tomato and cucumber production in perlite media. Factsheet HS927. Department of Horticultural Sciences, Florida cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Retrieved June 30, 2007, from http://edis.ifas.ufl.edu/HS169.

  • Jones, J. P. (1991). Fusarium wilt. In J. B. Jones, R. E. Stall, & T. A. Zitter (Eds.) Compendium of tomato diseases. St. Paul, Minnesota: APS.

    Google Scholar 

  • Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., & Lugtenberg, B. (2006). Effects of the tomato pathogen Fusarium oxysporum f.sp. radicis-lycopersici and the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudates. Molecular Plant Microbe Interactions, 19, 1121–1126.

    Article  PubMed  CAS  Google Scholar 

  • Kravchenko, L. V., Azarova, T. S., Leonova-Erko, E. I., Shaposhnikov, A. I., Makarova, N. M., & Tikhonovich, I. A. (2003). Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiology, 72, 37–41.

    Article  CAS  Google Scholar 

  • Lagopodi, A. L., Ram, A. F. J., Lamers, G. E. M., Punt, P. J., Van den Hondel, C. A. M., Lugtenberg, B. J. J., et al. (2002). Novel aspects of tomato root colonization and infection by Fusarium oxysporum f.sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Molecular Plant Microbe Interactions, 15, 172–179.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, R. P., & Fravel, D. R. (1999). Mechanisms of action and dose–response relationships governing biological control of Fusarium wilt by nonpathogenic Fusarium spp. Phytopathology, 89, 1152–1161.

    Article  Google Scholar 

  • Lioussanne, L., Jolicoeur, M., & St-Arnaud, M. (2003). Effects of the alteration of tomato root exudation by Glomus intraradices colonization on Phytophthora parasitica var. nicotianae zoospores. In: Proceedings of the Fourth International Conference on Mycorrhizae, Aug. 10–15, Montreal/Canada, p. 291.

  • Lugtenberg, B. J. J., Kravchenko, L. V., & Simons, M. (1999). Tomato seed and root exudate sugars: Composition, utilization by Pseudomonas biocontrol strains and role in the rhizosphere colonization. Environmental Microbiology, 1, 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Matta, A. (1989). Induced resistance to fusarium wilt diseases. In E. C. Tjamos, & C. H. Beckman (Eds.) Vascular wilt diseases of plants—Basic studies and control (pp. 175–196). NATO ASI Series, Berlin: Springer.

    Google Scholar 

  • Nelson, E. B. (1991). Exudate molecules initiating fungal responses to seed and roots. In D. L. Keister, & P.B. Cregan (Eds.) The rhizosphere and plant growth (pp. 197–209). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Olivain, C., & Alabouvette, C. (1997). Colonization of tomato root by a non-pathogenic strain of Fusarium. New Phytologist, 137, 481–494.

    Article  Google Scholar 

  • Olivain, C., & Alabouvette, C. (1999). Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f.sp. lycopersici in comparison with a non-pathogenic strain. New Phytologist, 141, 497–510.

    Article  Google Scholar 

  • Olivain, C., Humbert, C., Nahalkova, J., Fatehi, J., L’Haridon, F., & Alabouvette, C. (2006). Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Applied and Environmental Microbiology, 72, 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Pinior, A., Wyss, U., Piché, Y., & Vierheilig, H. (1999). Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Canadian Journal of Botany, 77, 891–897.

    Article  Google Scholar 

  • Ruan, Y., Kotraiah, V., & Straney, D. C. (1995). Flavonoids stimulate spore germination in Fusarium solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Molecular Plant Microbe Interactions, 8, 929–938.

    CAS  Google Scholar 

  • Scheffknecht, S., Mammerler, R., Steinkellner, S., & Vierheilig, H. (2006). Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f.sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza, 16, 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Scheffknecht, S., St-Arnaud, M., Khaosaad, T., Steinkellner, S., & Vierheilig, H. (2007). An altered root exudation pattern through mycorrhization affecting microconidia germination of the highly specialized tomato pathogen Fusarium oxysporum f.sp. lycopersici (Fol) is not tomato specific but also occurs in Fol non-host plants. Canadian Journal of Botany, 85, 347–351.

    Article  CAS  Google Scholar 

  • Sood, S. G. (2003). Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular–arbuscular mycorrhizal tomato plants. FEMS Microbiology Ecology, 45, 219–227.

    Article  Google Scholar 

  • Steinberg, C., Whipps, J. M., Wood, D., Fenlon, J., & Alabouvette, C. (1999). Mycelial development of Fusarium oxysporum in the vicinity of tomato roots. Mycological Research, 103, 769–778.

    Article  Google Scholar 

  • Steinkellner, S., Mammerler, R., & Vierheilig, H. (2005). Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. Journal of Plant Interactions, 1, 23–30.

    Article  CAS  Google Scholar 

  • Stevenson, P. C., Padgham, D. E., & Haware, M. P. (1995). Root exudates associated with resistance of four chickpea cultivars (Cicer arietinum) to two races of Fusarium oxysporum f.sp. ciceri. Plant Pathology, 44, 686–694.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegrid Steinkellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinkellner, S., Mammerler, R. & Vierheilig, H. Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur J Plant Pathol 122, 395–401 (2008). https://doi.org/10.1007/s10658-008-9306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9306-1

Keywords

Navigation