Skip to main content
Log in

Susceptibility of wild carrot (Daucus carota ssp. carota) to Sclerotinia sclerotiorum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Sclerotinia soft rot, caused by Sclerotinia sclerotiorum, is a severe disease of cultivated carrots (Daucus carota ssp. sativus) in storage. It is not known whether Sclerotinia soft rot also affects wild carrots (D. carota ssp. carota), which hybridise and exchange genes, among them resistance genes, with the cultivated carrot. We investigated the susceptibility of wild carrots to S. sclerotiorum isolates from cultivated carrot under controlled and outdoor conditions. Inoculated roots from both wild and cultivated plants produced sclerotia and soft rot in a growth chamber test. Two isolates differed significantly in the ability to produce lesions and sclerotia on roots of both wild carrots and cv. Bolero. Flowering stems of wild carrots produced dry, pale lesions after inoculation with the pathogen, and above-ground plant weight was significantly reduced 4 weeks after inoculation in a greenhouse test. Wild and cultivar rosette plants died earlier and fewer plants survived when inoculated with the pathogen under outdoor test conditions. Cultivar plants died earlier than wild plants, but survived as frequently. Plants inoculated in the crown died earlier and at a lower frequency than plants inoculated on leaves. Wild carrots may thus serve as a host of S. sclerotiorum and thus eventually benefit from any uptake of resistance genes, among them transgenes, via introgression from cultivated carrots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andow, D. A., & Zwahlen, C. (2006). Assessing environmental risks of transgenic plants. Ecology Letters, 9, 196–214.

    Article  PubMed  CAS  Google Scholar 

  • Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93–108.

    Google Scholar 

  • Bourdôt, G. W., Harvey, I. C., Hurrell, G. A., & Saville, D. J. (1995). Demographic and biomass production consequences of inundative treatment of Circium arvense with Sclerotinia sclerotiorum. Biocontrol Science and Technology, 5, 11–25.

    Article  Google Scholar 

  • Brandenburg, W. A. (1981). Possible relationships between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Kulturpflanze, 29, 369–375.

    Article  Google Scholar 

  • Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 4, 19–39.

    Article  Google Scholar 

  • Chen, W. P., & Punja, Z. K. (2002). Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Reporter, 20, 929–935.

    Article  CAS  Google Scholar 

  • Conner, A. J., Glare, T. R., & Nap, J. P. (2003). The release of genetically modified crops into the environment – Part II. Overview of ecological risk assessment. The Plant Journal, 33, 19–46.

    Article  PubMed  Google Scholar 

  • Cornwallis, L. J., Stewart, A., Bourdôt, G. W., Gaunt, R. E., Harvey, I. C., & Saville, D. J. (1999). Pathogenicity of Sclerotinia sclerotiorum on Ranunculus acris in dairy pasture. Biocontrol Science and Technology, 9, 365–377.

    Article  Google Scholar 

  • Cother, E. J. (2000). Pathogenicity of Sclerotinia sclerotiorum to Chrysanthemoides monilifera ssp. rotundata (Bitoubush) and selected species of the coastal flora in Eastern Australia. Biological Control, 18, 10–17.

    Article  Google Scholar 

  • Damgaard, C., & Jensen, B. D. (2002). Disease resistance in Arabidopsis thaliana increases the competitive ability and the predicted probability of long-term ecological success under disease pressure. Oikos, 98, 459–466.

    Article  Google Scholar 

  • D’Antuono, L. F. (1985). Studio sull’inquinamento genetico causato da polline de tipi spontanei in carota da seme. Rivista di Agronomia, 19, 297–304.

    Google Scholar 

  • Erneberg, M., Strandberg, B., & Jensen, B. D. (2003). Susceptibility of a plant invader to a pathogenic fungus: An experimental study of Heracleum mantegazzianum (giant hogweed) and Sclerotinia sclerotiorum. In L. E. Child, J. H. Brock, G. Brundu, K. Prach, P. Pyšek, P. M. Wade, & M. Williamson (Eds.) Plant invasions: Ecological threats and management solutions (pp. 355–372). Leiden, The Netherlands: Backhuys Publishers.

    Google Scholar 

  • Finlayson, J. E., Rimmer, S. R., & Pritchard, M. K. (1989). Infection of carrots by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 11, 242–246.

    Google Scholar 

  • Hansen, K. (1981). Dansk feltflora. Copenhagen: Gyldendalske Boghandel, Nordisk Forlag A/S.

    Google Scholar 

  • Hauser, T. P., & Bjørn, G. K. (2001). Hybrids between wild and cultivated carrots in Danish carrot fields. Genetic Resources and Crop Evolution, 48, 499–506.

    Article  Google Scholar 

  • Hauser, T. P., & Shim, S. I. (2007). Survival and flowering of hybrids between cultivated and wild carrots (Daucus carota) in Danish grasslands. Environmental Biosafety Research, 6, 237–247.

    Article  PubMed  Google Scholar 

  • Holm, L., Doll, J., Holm, E., Pancho, J. V., & Herberger, J. P. (1997). World weeds: Natural histories and distribution. New York: Wiley.

    Google Scholar 

  • Jacobs, J. S., Sheley, R. L., & Maxwell, B. D. (1996). Effect of Sclerotinia sclerotiorum on the interference between bluebunch wheatgrass (Agropyrum spicatum) and spotted knapweed (Centaurea maculosa). Weed Technology, 10, 13–21.

    Google Scholar 

  • Kora, C., McDonald, M. R., & Boland, G. J. (2003). Sclerotinia rot of carrot. An example of phenological adaptation and bicyclic development by Sclerotinia sclerotiorum. Plant Disease, 87, 456–470.

    Article  Google Scholar 

  • Kohli, Y., & Kohn, L. M. (1996). Mitochondrial haplotypes in populations of the plant-infecting fungus Sclerotinia sclerotiorum: wide distribution in agriculture, local distribution in the wild. Molecular Ecology, 5, 773–783.

    Article  CAS  Google Scholar 

  • Kohn, L. M. (1995). The clonal dynamic in wild and agricultural plant–pathogen populations. Canadian Journal of Botany, 73(Suppl. 1), S1231–S1240.

    Article  Google Scholar 

  • Kull, L. S., Pedersen, W. L., Palmquist, D., & Hartman, G. L. (2004). Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Disease, 88, 325–332.

    Article  Google Scholar 

  • Lewis, B. G., & Garrod, B. (1983). Carrots. In C. Dennis (Ed.) Post-harvest pathology of fruits and vegetables (pp. 103–124). London: Academic Press.

    Google Scholar 

  • Magnussen, L. S., & Hauser, T. P. (2007). Hybrids between wild and cultivated carrots in natural populations in Denmark. Heredity, 99, 185–192.

    Article  PubMed  CAS  Google Scholar 

  • McDowell, J. M., & Simon, S. A. (2006). Recent insights into R gene evolution. Molecular Plant Pathology, 7, 437–448.

    Article  CAS  Google Scholar 

  • Mitich, L. W. (1996). Wild carrot (Daucus carota L.). Weed Technology, 10, 455–457.

    Google Scholar 

  • Pascher, K., & Gollmann, G. (1999). Ecological risk assessment of transgenic plant releases: an Austrian perspective. Biodiversity and Conservation, 8, 1139–1158.

    Article  Google Scholar 

  • Pratt, R. G., & Rowe, D. E. (1995). Comparative pathogenicity of isolates of Sclerotinia trifoliorum and S. Sclerotiorum on alfalfa cultivars. Plant Disease, 79, 474–477.

    Google Scholar 

  • Price, K., & Colhoun, J. (1975). Pathogenicity of isolates of Sclerotinia sclerotiorum (Lib.) De Bary to several hosts. Journal of Phytopathology, 83, 232–238.

    Article  Google Scholar 

  • Stachler, J. M., & Kells, J. J. (1997). Wild carrot (Daucus carota) control in no-tillage cropping systems. Weed Technology, 11, 444–452.

    Google Scholar 

  • Takaichi, M., & Oeda, K. (2000). Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Science, 153, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B., Brubaker, C. L., & Burdon, J. J. (2004). Fusarium species and Fusarium wilt pathogens associated with native Gossypium populations in Australia. Mycological Research, 108, 35–44.

    Article  PubMed  Google Scholar 

  • Warren, J., & James, P. (2006). The ecological effects of exotic disease resistance genes introgressed into British gooseberries. Oecologia, 147, 69–75.

    Article  PubMed  Google Scholar 

  • Wijnheijmer, E. H. M., Brandenburg, W. A., & Ter Borg, S. J. (1989). Interactions between wild and cultivated carrot (Daucus carota L.) in the Netherlands. Euphytica, 40, 147–154.

    Google Scholar 

Download references

Acknowledgements

We thank Tage K. Jensen, Fårevejle for providing cultivated carrot roots and Beate Strandberg, National Environmental Research Institute, for providing wild carrots from Silkeborg. We are grateful to David B. Collinge for constructive comments. This study was financed by the Centre for Effects and Risks of Biotechnology in Agriculture, The Danish Environmental Research Programme (SMPII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, B.D., Finckh, M.R., Munk, L. et al. Susceptibility of wild carrot (Daucus carota ssp. carota) to Sclerotinia sclerotiorum . Eur J Plant Pathol 122, 359–367 (2008). https://doi.org/10.1007/s10658-008-9300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9300-7

Keywords

Navigation