Skip to main content
Log in

Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This review describes the naturally occurring mechanisms in cereals that lead to a reduction of Fusarium trichothecene mycotoxin accumulation in grains. A reduction in mycotoxin contamination in grains could also limit fungal infection, as trichothecenes have been reported to act as virulence factors. The mechanisms explaining the low toxin accumulation trait, generally referred to as type V resistance to Fusarium, can be subdivided into two classes. Class 1 includes mechanisms by which the plants chemically transform the trichothecenes, leading to their degradation or detoxification. Among the detoxification strategies, glycosylation of trichothecenes is a natural process already reported in wheat. According to the structure and the toxicity of trichothecenes, two other detoxification processes, acetylation and de-epoxidation, can be expressed, at least in transgenic plants. Class 2 comprises mechanisms that lead to reduced mycotoxin accumulation by inhibition of their biosynthesis through the action of plant endogenous compounds. These include both grain constitutive compounds and compounds induced in response to pathogen infection. There are already many compounds with antioxidant properties, like phenolic compounds, peptides or carotenoids, and with prooxidant properties, like hydrogen peroxide or linoleic acid-derived hydroperoxides, that have been described as ‘modulators’ of mycotoxin biosynthesis. This review addresses for the first time different studies reporting specific in vitro effects of such compounds on the biosynthesis of Fusarium mycotoxins. A better understanding of the natural processes limiting accumulation of trichothecenes in the plant will open the way to the development of novel breeding varieties with reduced ‘mycotoxin risk’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-ADON:

3-acetyl-4-deoxynivalenol

15-ADON:

15-acetyl-4-deoxynivalenol

4-ABOA:

4-acetyl-benzoxazolin-2-one

9S-HPODE:

9S-hydroperoxide

13S-HPODE:

13S-hydroperoxide

DON:

deoxynivalenol

FHB:

Fusarium head blight

FX:

fusarenone X

LC:

liquid chromatography

LOX:

lipoxygenase

MS:

mass spectrometry

NIV:

nivalenol

QTL:

quantitative trait loci

TCT B:

trichothecene B

UDP glycosyltransferase:

uridine diphosphate glycosyltransferase

References

  • Abdel-Aal, E. S. M., Young, J. C., Rabalski, I., Hucl, P., & Fregeau-Reid, J. (2007). Identification and quantification of seed carotenoids in selected wheat species. Journal of Agricultural and Food Chemistry, 55, 787–794.

    CAS  Google Scholar 

  • Apel, K., Bohlmann, H., & Reimann-Philipp, U. (1990). Leaf thionins, a novel class of putative defence factors. Physiologia Plantarum, 80, 315–321.

    CAS  Google Scholar 

  • Assabgui, R. A., Reid, L. M., Hamilton, R. I., & Arnason, J. T. (1993). Correlation of kernel (E)-ferulic acid content of maize with resistance to Fusarium graminearum. Phytopathology, 83, 949–953.

    CAS  Google Scholar 

  • Atkinson, H. A. C., & Miller, K. (1984). Inhibitory effect of deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation. Toxicology Letters, 23, 215–221.

    PubMed  CAS  Google Scholar 

  • Aziz, N. H., Farag, S. E., Mousa, L. A. A., & Abo-Zaid, M. A. (1998). Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios, 93, 43–54.

    PubMed  CAS  Google Scholar 

  • Bakan, B., Bily, A. C., Melcion, D., Cahagnier, B., Regnault-Roger, C., Philogene, B. J. R., et al. (2003). Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels. Journal of Agricultural and Food Chemistry, 51, 2826–2831.

    PubMed  CAS  Google Scholar 

  • Beekrum, S., Govinden, R., Padayachee, T., & Odhav, B. (2003). Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Additives and Contaminants, 20, 490–493.

    PubMed  CAS  Google Scholar 

  • Bell, A. A. (1981). Biochemical mechanisms of disease resistance. Annual Review of Plant Physiology, 32, 21–81.

    CAS  Google Scholar 

  • Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16, 497–516.

    PubMed  CAS  Google Scholar 

  • Berthiller, F., Dall’Asta, C., Schuhmacher, R., Lemmens, M., Adam, G., & Krska, R. (2005). Masked mycotoxins: Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 53, 3421–3425.

    PubMed  CAS  Google Scholar 

  • Bily, A. (2003). Rôle et importance des déhydrodimères d’acide férulique et autres phénylpropanoïdes dans les mécanismes de résistance de Zea mays L. à Fusarium graminearum Schwabe. Doctoral Thesis, Pau University, France.

  • Bily, A. C., Reid, L. M., Taylor, J. H., Johnston, D., Malouin, C., Burt, A. J., et al. (2003). Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology, 93, 712–719.

    CAS  PubMed  Google Scholar 

  • Binder, E. M. (2007). Managing the risk of mycotoxins in modern feed production. Animal Feed Science and Technology, 133, 149–166.

    CAS  Google Scholar 

  • Binder, E. M., Heidler, D., Schatzmayr, G., Thimm, N., Fuchs, E., Schuh, M., et al. (2000). Mycotoxins and phycotoxins in perspective at the turn of the millennium. (Paper presented at the 10th International IUPAC Symposium on Mycotoxins and Phycotoxins, Guarujá, Brazil).

  • Bottalico, A., & Perrone, G. (2002). Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, 108, 611–624.

    CAS  Google Scholar 

  • Bruins, M. B. M., Karsai, I., Schepers, J., & Snijders, C. H. A. (1993). Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Science, 94, 195–206.

    CAS  Google Scholar 

  • Burow, G. B., Nesbitt, T. C., Dunlap, J., & Keller, N. P. (1997). Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Molecular Plant-Microbe Interactions, 10, 380–387.

    CAS  Google Scholar 

  • Castoria, R., de Luca, C., Fabbri, A. A., Passi, S., & Fanelli, C. (1989). By-products of lipoperoxidation and aflatoxin production. Journal of Toxicology, 8, 349–360.

    CAS  Google Scholar 

  • Champeil, A., Dore, T., & Fourbet, J. F. (2004). Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Science, 166, 1389–1415.

    CAS  Google Scholar 

  • Chen, Z. Y., Brown, R. L., Lax, A. R., Guo, B. Z., Cleveland, T. E., & Russin, J. S. (1998). Resistance to Aspergillus flavus in corn kernels is associated with a 14- kDa protein. Phytopathology, 88, 276–281.

    CAS  PubMed  Google Scholar 

  • Chen, Z. Y., Brown, R. L., Rajasekaran, K., Damann, K. E., & Cleveland, T. E. (2006). Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathology, 96, 87–95.

    CAS  PubMed  Google Scholar 

  • Chipley, J. R., & Uraih, N. (1980). Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Applied and Environmental Microbiology, 40, 352–357.

    PubMed  CAS  Google Scholar 

  • Coleman, J. O. D., Blake-Kalff, M. M. A., & Davies, T. G. E. (1997). Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends in Plant Science, 2, 144–151.

    Google Scholar 

  • Dall’Asta, C., Berthiller, F., Schuhmacher, R., Adam, G., Lemmens, M., & Krska, R. (2005). DON-glycosides: characterisation of synthesis products and screening for their occurrence in DON-treated wheat samples. Mycotoxin Research, 21, 123–127.

    CAS  Google Scholar 

  • Desjardins, A. E., Hohn, T. M., & McCormick, S. P. (1993). Trichothecene biosynthesis in Fusarium species: chemistry, genetics and significance. Microbiological Reviews, 57, 595–604.

    PubMed  CAS  Google Scholar 

  • Desjardins, A. E., Plattner, R. D., & Spencer, G. F. (1988). Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics. Phytochemistry, 27, 767–771.

    CAS  Google Scholar 

  • Doohan, F. M., Mentewab, A., & Nicholson, P. (2000). Antifungal activity toward Fusarium culmorum in soluble wheat extracts. Phytopathology, 90, 666–671.

    PubMed  CAS  Google Scholar 

  • Duvick, J. P., Rood, T., Rao, A. G., & Marshak, D. R. (1992). Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. Journal of Biological Chemistry, 267, 18814–18820.

    PubMed  CAS  Google Scholar 

  • Edwards, S. G. (2004). Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicology Letters, 153, 29–35.

    PubMed  CAS  Google Scholar 

  • Egorov, T. A., Odintsova, T. I., Pukhalsky, V. A., & Grishin, E. V. (2005). Diversity of wheat anti-microbial peptides. Peptides, 26, 2064–2073.

    PubMed  CAS  Google Scholar 

  • El-Banna, A. A. (1987). Stability of citrinin and deoxynivalenol during germination process of barley. Mycotoxin Research, 3, 37–41.

    Google Scholar 

  • Eriksen, G. S. (2003). Metabolism and toxicity of trichothecenes. Doctoral Thesis, Uppsala University, Sweden.

  • Eriksen, G. S., Pettersson, H., & Lundh, T. (2004). Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food and Chemical Toxicology, 42, 619–624.

    Google Scholar 

  • Eudes, F., Comeau, A., Rioux, S., & Collin, J. (2000). Phytotoxicity of eight mycotoxins associated with the fusariosis of wheat spikelets. Canadian Journal of Plant Pathology, 22, 286–292.

    Article  CAS  Google Scholar 

  • Fabbri, A. A., Fanelli, C., Panfili, G., Passi, S., & Fasella, P. (1983). Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and A. flavus. Journal of General Microbiology, 129, 3447–3452.

    CAS  Google Scholar 

  • Fanelli, C., & Fabbri, A. A. (1989). Relationship between lipids and aflatoxin biosynthesis. Mycopathologia, 107, 115–120.

    PubMed  CAS  Google Scholar 

  • Fanelli, C., Fabbri, A. A., Panfili, G., Castoria, R., Luca, C. D., & Passi, S. (1989). Aflatoxin congener biosynthesis induced by lipoperoxidation. Experimental Mycology, 13, 61–68.

    CAS  Google Scholar 

  • Favre L., Verdal-Bonnin, M. N., Pinson-Gadais, L., Roumet, P., Barreau, C., & Richard- Forget, F. (2004). Does biochemical composition of durum wheat kernels influence the trichothecenes B (TCT B) contamination levels? (Paper presented at the 2nd International Symposium on Fusarium Head Blight, Orlando, Florida, USA).

  • Friend, J. (1981). Plant phenolics, lignification and plant disease. Progress in Phytochemistry, 7, 197–261.

    CAS  Google Scholar 

  • Fritig, B., Heitz, T., & Legrand, M. (1998). Antimicrobial proteins in induced plant defense. Current Opinion in Immunology, 10, 16–22.

    PubMed  CAS  Google Scholar 

  • Fuchs, E., Binder, E. M., Heidler, D., & Krska, R. (2002). Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Additives and Contaminants, 19, 379–386.

    PubMed  CAS  Google Scholar 

  • Fujita, M., & Yoshizawa, T. (1990). Metabolism of deoxynivalenol, a trichothecene mycotoxin, in sweet potato root tissues. Journal of the Food Hygienic Society of Japan, 31, 474–478.

    CAS  Google Scholar 

  • Gardner, H. W. (1991). Recent investigations into the lipoxygenase pathways of plants. Biochimica and Biophysica Acta, 1084, 221–239.

    CAS  Google Scholar 

  • Gareis, M., Bauer, J., Thiem, J., Plank, G., Grabley, S., & Gedek, B. (1990). Cleavage of zearalenone-glycoside, a “masked” mycotoxin during digestion in swine. Journal of Veterinary Medicine, 37, 236–240.

    Article  CAS  Google Scholar 

  • Garvey, G. S., McCormick, S. P., & Rayment, I. (2007). Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum; kinetic insights to combating Fusarium head blight. Journal of Biological Chemistry. DOI 10.1074/m705752200.

  • Goodrich-Tanrikulu, M., Mahoney, N. E., & Rodriguez, S. B. (1995). The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus. Microbiology, 141, 2831–2837.

    Article  PubMed  CAS  Google Scholar 

  • Guiraud, P., Steiman, R., Seigle-Murandi, F., & Benoit-Guyod, J. L. (1995). Comparison of the toxicity of various lignin-related phenolic compounds toward selected fungi perfecti and fungi imperfecti. Ecotoxicology and Environmental Safety, 32, 29–33.

    PubMed  CAS  Google Scholar 

  • Hazel, C. M., & Patel, S. (2004). Influence of processing on trichothecene levels. Toxicology Letters, 153, 51–59.

    PubMed  CAS  Google Scholar 

  • Hentschel, V., Kranl, K., Hollmann, J., Lindhauer, M. G., Bohm, V., & Bitsch, R. (2002). Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. Journal of Agricultural and Food Chemistry, 50, 6663–6668.

    PubMed  CAS  Google Scholar 

  • Hua, S.-S. T., Grosjean, O.-K., & Baker, J. L. (1999). Inhibition of aflatoxin biosynthesis by phenolic compounds. Letters in Applied Microbiology, 29, 289–291.

    PubMed  CAS  Google Scholar 

  • Huang, Z., White, D. G., & Payne, G. A. (1997). Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis. Phytopathology, 87, 622–627.

    CAS  PubMed  Google Scholar 

  • Huynh, Q. K., Borgmeyer, J. R., & Zobel, J. F. (1992b). Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochemical and Biophysical Research Communications, 182, 1–5.

    PubMed  CAS  Google Scholar 

  • Huynh, Q. K., Hironaka, C. M., Levine, E. B., Smith, C. E., Borgmeyer, J. R., & Shah, D. M. (1992a). Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. Journal of Biological Chemistry, 267, 6635–6640.

    PubMed  CAS  Google Scholar 

  • Jones, P., & Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta, 213, 164–174.

    PubMed  CAS  Google Scholar 

  • Kachroo, A., He, Z. H., Patkar, R., Zhu, Q., Zhong, J., Li, D., et al. (2003). Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Research, 12, 577–586.

    PubMed  CAS  Google Scholar 

  • Kimura, M., Kaneko, I., Komiyama, M., Takatsuki, A., Koshino, H., Yoneyama, K., et al. (1998). Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins - Cloning and characterization of Tri101. Journal of Biological Chemistry, 273, 1654–1661.

    PubMed  CAS  Google Scholar 

  • Kimura, M., Takahashi-Ando, N., Nishiuchi, T., Ohsato, S., Tokai, T., Ochiai, N., et al. (2006). Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination. Pesticide Biochemistry and Physiology, 86, 117–123.

    CAS  Google Scholar 

  • Konopka, I., Czaplicki, S., & Rotkiewicz, D. (2006). Differences in content and composition of free lipids and carotenoids in flour of spring and winter wheat cultivated in Poland. Food Chemistry, 95, 290–300.

    CAS  Google Scholar 

  • Lee, S. E., Campbell, B. C., Molyneux, R. J., Hasegawa, S., & Lee, H. S. (2001). Inhibitory effects of naturally occurring compounds on aflatoxin B1 biotransformation. Journal of Agricultural and Food Chemistry, 49, 5171–5177.

    PubMed  CAS  Google Scholar 

  • Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., et al. (2005). The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Molecular Plant-Microbe Interactions, 18, 1318–1324.

    PubMed  CAS  Google Scholar 

  • Lempereur, I., Rouau, X., & Abecassis, J. (1997). Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions. Journal of Cereal Science, 25, 103–110.

    CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.

    PubMed  CAS  Google Scholar 

  • Mahoney, N., & Molyneux, R. J. (2004). Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). Journal of Agricultural and Food Chemistry, 52, 1882–1889.

    PubMed  CAS  Google Scholar 

  • Mallozzi, M. A. B., Correa, B., Haraguchi, M., & Neto, F. B. (1996). Effect of flavonoids on Aspergillus flavus growth and aflatoxin production. Revista de Microbiologia, 27, 161–165.

    CAS  Google Scholar 

  • Manoharan, M., Dahleen, L. S., Hohn, T. M., Neate, S. M., Yu, X. H., Alexander, N. J., et al. (2006). Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Science, 171, 699–706.

    CAS  Google Scholar 

  • Matern, U., & Kneusel, R. E. (1988). Phenolic compounds in plant disease resistance. Phytoparasitica, 16, 153–170.

    CAS  Google Scholar 

  • McCormick, S. P., Alexander, N. J., Trapp, S. E., & Hohn, T. M. (1999). Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Applied and Environmental Microbiology, 65, 5252–5256.

    PubMed  CAS  Google Scholar 

  • McCormick, S. P., Bhatnagar, D., Goynes, W. R., & Lee, L. S. (1988). An inhibitor of aflatoxin biosynthesis in developing cottonseed. Canadian Journal of Botany, 66, 998–1002.

    CAS  Google Scholar 

  • McKeehen, J. D., Bush, R. H., & Fulcher, R. G. (1999). Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. Journal of Agricultural and Food Chemistry, 47, 1476–1482.

    PubMed  CAS  Google Scholar 

  • Mesterházy, Á. (2002). Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. European Journal of Plant Pathology, 108, 675–684.

    Google Scholar 

  • Mesterházy, Á., Bartók, T., Mirocha, C. G., & Komoróczy, R. (1999). Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding, 118, 97–110.

    Google Scholar 

  • Miller, J. D., & Arnison, P. G. (1986). Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Canadian Journal of Plant Pathology, 8, 147–150.

    Article  CAS  Google Scholar 

  • Miller, J. D., & Blackwell, B. A. (1986). Biosynthesis of 3-acetyldeoxynivalenol and other metabolites by Fusarium culmorum HLX 1503 in a stirred jar fermentor. Canadian Journal of Botany, 64, 1–5.

    CAS  Google Scholar 

  • Miller, J. D., Fielder, D. A., Dowd, P. F., Norton, R. A., & Collins, F. W. (1996). Isolation of 4-acetyl-benzoxazolin-2-one (4-ABOA) and diferuloylputrescine from an extract of Gibberella ear rot-resistant corn that blocks mycotoxin biosynthesis, and the insect toxicity of 4-ABOA and related compounds. Biochemical Systematics and Ecology, 24, 647–658.

    CAS  Google Scholar 

  • Miller, J. D., & Young, J. C. (1985). Deoxynivalenol in an experimental Fusarium graminearum infection of wheat. Canadian Journal of Plant Pathology, 7, 132–134.

    Article  CAS  Google Scholar 

  • Miller, J. D., Young, J. C., & Sampson, D. R. (1985). Deoxynivalenol and Fusarium head blight resistance in spring cereals. Phytopathologische Zeitschrift, 113, 359–367.

    CAS  Google Scholar 

  • Miller, J. D., Young, J. C., & Trenholm, H. L. (1983). Fusarium toxins in field corn. I. Time course of fungal growth and production of deoxynivalenol and other mycotoxins. Canadian Journal of Botany, 61, 3080–3087.

    CAS  Google Scholar 

  • Mitterbauer, R., & Adam, G. (2002). Saccharomyces cerevisae and Arabidopsis thaliana: useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins. European Journal of Plant Pathology, 108, 699–703.

    CAS  Google Scholar 

  • Moore, J., Liu, J. G., Zhou, K. Q., & Yu, L. L. (2006). Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. Journal of Agricultural and Food Chemistry, 54, 5313–5322.

    PubMed  CAS  Google Scholar 

  • Mpofu, A., Sapirstein, H. D., & Beta, T. (2006). Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry, 54, 1265–1270.

    PubMed  CAS  Google Scholar 

  • Muthukrishnan, S., Liang, G. H., Trick, H. N., & Gill, B. S. (2001). Pathogenesis-related proteins and their genes in cereals. Plant Cell, Tissue and Organ Culture, 64, 93–114.

    CAS  Google Scholar 

  • Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054, 95–111.

    PubMed  CAS  Google Scholar 

  • Nagarajan, V., & Bhat, R. V. (1972). Factor responsible for varietal differences in aflatoxin in maize. Journal of Agricultural and Food Chemistry, 20, 911–914.

    CAS  Google Scholar 

  • Nesci, A. V., & Etcheverry, M. G. (2006). Control of Aspergillus growth and aflatoxin production using natural maize phytochemicals under different conditions of water activity. Pest Management Science, 62, 775–784.

    PubMed  CAS  Google Scholar 

  • Neucere, J. N., & Godshall, M. A. (1991). Effects of base-soluble proteins and methanol-soluble polysaccharides from corn on mycelial growth of Aspergillus flavus. Mycopathologia, 113, 103–108.

    PubMed  CAS  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic-compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    CAS  Google Scholar 

  • Norton, R. A. (1997). Effect of carotenoids on aflatoxin B1 synthesis by Aspergillus flavus. Phytopathology, 87, 814–821.

    CAS  PubMed  Google Scholar 

  • Norton, R. A. (1999). Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids. Journal of Agricultural and Food Chemistry, 47, 1230–1235.

    PubMed  CAS  Google Scholar 

  • Ohsato, S., Ochiai-Fukuda, T., Nishiuchi, T., Takahashi-Ando, N., Koizumi, S., Hamamoto, H., et al. (2007). Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol. Plant Cell Reports, 26, 531–538.

    PubMed  CAS  Google Scholar 

  • Okubara, P. A., Blechl, A. E., McCormick, S. P., Alexander, N. J., Dill-Macky, R., & Hohn, T. M. (2002). Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theoretical and Applied Genetics, 106, 74–83.

    PubMed  CAS  Google Scholar 

  • Passi, S., Nazzaro-Porro, M., Fanelli, C., Fabbri, A. A., & Fasella, P. (1984). Role of lipoperoxidation in aflatoxin production. Applied Microbiology and Biotechnology, 19, 186–190.

    CAS  Google Scholar 

  • Pinson-Gadais, L., Barreau, C., Chaurand, M., Gregoire, S., Monmarson, M., & Richard-Forget, F. (2007). Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat. Food Additives and Contaminants, 24, 53–62.

    PubMed  CAS  Google Scholar 

  • Ponts, N. (2005). Influence de stress oxydatifs sur la biosynthèse de mycotoxines de Fusarium spp. contaminantes de l’épi de maïs. Doctoral Thesis, Bordeaux University, France.

  • Ponts, N., Pinson-Gadais, L., Barreau, C., Richard-Forget, F., & Ouellet, T. (2007). Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Letters, 581, 443–447.

    PubMed  CAS  Google Scholar 

  • Ponts, N., Pinson-Gadais, L., & Richard-Forget, F. (2003). H2O2 effects on trichothecenes B (DON, ADON) production by Fusarium graminearum in liquid culture. Aspects of Applied Biology, 68, 223–228.

    Google Scholar 

  • Ponts, N., Pinson-Gadais, L., Verdal-Bonnin, M. N., Barreau, C., & Richard-Forget, F. (2006). Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiology Letters, 258, 102–107.

    PubMed  CAS  Google Scholar 

  • Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, R., et al. (2003). Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 278, 47905–47914.

    PubMed  CAS  Google Scholar 

  • Proctor, R. H., Hohn, T. M., & McCormick, S. P. (1995). Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant-Microbe Interactions, 8, 593–601.

    PubMed  CAS  Google Scholar 

  • Reid, L. M., Mather, D. E., Arnason, J. T., Hamilton, R. I., & Bolton, A. T. (1992). Changes in phenolic constituents of maize silk infected with Fusarium graminearum. Canadian Journal of Botany, 70, 1697–1702.

    CAS  Google Scholar 

  • Repka, V. (1999). Improved histochemical test for in situ detection of hydrogen peroxide in cells undergoing oxidative burst or lignification. Biologia Plantarum, 42, 599–607.

    CAS  Google Scholar 

  • Rocha, O., Ansari, K., & Doohan, F. M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Additives and Contaminants, 22, 369–378.

    PubMed  CAS  Google Scholar 

  • Savard, M. E. (1991). Deoxynivalenol fatty acid and glucoside conjugates. Journal of Agricultural and Food Chemistry, 39, 570–574.

    CAS  Google Scholar 

  • Schatzmayr, G., Zehner, F., Taubel, M., Schatzmayr, D., Klimitsch, A., Loibner, A. P., et al. (2006). Microbiologicals for deactivating mycotoxins. Molecular Nutrition and Food Research, 50, 543–551.

    PubMed  CAS  Google Scholar 

  • Schneweis, I., Meyer, K., Engelhardt, G., & Bauer, J. (2002). Occurrence of zearalenone-4-beta-D-glucopyranoside in wheat. Journal of Agricultural and Food Chemistry, 50, 1736–1738.

    PubMed  CAS  Google Scholar 

  • Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.

    Google Scholar 

  • Scott, P. M., Nelson, K., Kanhere, S. R., Karpinski, K. F., Hayward, S., Neish, G. A., et al. (1984). Decline in deoxynivalenol (vomitoxin) concentrations in 1983 Ontario winter wheat before harvest. Applied and Environmental Microbiology, 48, 884–886.

    PubMed  CAS  Google Scholar 

  • Sewald, N., Vongleissenthall, J. L., Schuster, M., Muller, G., & Aplin, R. T. (1992). Structure elucidation of a plant metabolite of 4-desoxynivalenol. Tetrahedron-Asymmetry, 3, 953–960.

    CAS  Google Scholar 

  • Siranidou, E., Kang, Z., & Buchenauer, H. (2002). Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight. Journal of Phytopathology, 150, 200–208.

    Google Scholar 

  • Snijders, C. H. A. (2004). Resistance in wheat to Fusarium infection and trichothecene formation. Toxicology Letters, 153, 37–46.

    PubMed  CAS  Google Scholar 

  • Swanson, S. P., Helaszek, C., Buck, W. B., Rood Jr., H. D., & Haschek, W. M. (1988). The role of intestinal microflora in the metabolism of trichothecene mycotoxins. Food and Chemical Toxicology, 26, 823–829.

    PubMed  CAS  Google Scholar 

  • Swanson, S. P., Rood Jr., H. D., Behrens, J. C., & Sanders, P. E. (1987). Preparation and characterization of the deepoxy trichothecenes: deepoxy HT-2, deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol and deepoxy scirpentriol. Applied and Environmental Microbiology, 53, 2821–2826.

    PubMed  CAS  Google Scholar 

  • Van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.

    Google Scholar 

  • Vergopoulou, S., Galanopoulou, D., & Markaki, P. (2001). Methyl jasmonate stimulates aflatoxin B1 biosynthesis by Aspergillus parasiticus. Journal of Agricultural and Food Chemistry, 49, 3494–3498.

    PubMed  CAS  Google Scholar 

  • Vigers, A. J., Roberts, W. K., & Selitrennikoff, C. P. (1991). A new family of plant antifungal proteins. Molecular Plant-Microbe Interactions, 4, 315–323.

    PubMed  CAS  Google Scholar 

  • Wakulinski, W. (1989). Phytotoxicity of the secondary metabolites of fungi causing wheat head fusariosis (head blight). Acta Physiologiae Plantarum, 11, 301–306.

    CAS  Google Scholar 

  • Wallace, G., & Fry, S. C. (1994). Phenolic components of the plant cell wall. International Review of Cytology, 151, 229–267.

    PubMed  CAS  Google Scholar 

  • Wang, Y. Z., & Miller, J. D. (1988). Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. Journal of Phytopathology, 122, 118–125.

    CAS  Google Scholar 

  • Wicklow, D. T., Norton, R. A., & McAlpin, C. E. (1998). β-Carotene inhibition of aflatoxin biosynthesis among Aspergillus flavus genotypes from Illinois corn. Mycoscience, 39, 167–172.

    CAS  Google Scholar 

  • Wu, X., Murphy, P., Cunnick, J., & Hendrich, S. (2007). Synthesis and characterization of deoxynivalenol glucuronide: its comparative immunotoxicity with deoxynivalenol. Food and Chemical Toxicology, 45, 1846–1855.

    PubMed  CAS  Google Scholar 

  • Yao, Q., Liu, Z., & Zeng, Y. (1996). Detoxification of deoxynivalenol by scab resistant wheat and the bioactivities of the product. Acta Mycologica Sinica, 15, 59–64.

    CAS  Google Scholar 

  • Zeringue Jr., H. J., Brown, R. L., Neucere, J. N., & Cleveland, T. E. (1996). Relationships between C6-C12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production. Journal of Agricultural and Food Chemistry, 44, 403–407.

    CAS  Google Scholar 

  • Zhou, W. C., Kolb, F. L., & Riechers, D. E. (2005). Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome, 48, 770–780.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of Anne-Laure Boutigny’s PhD project financially supported by the IRTAC (Institut de Recherches Technologiques Agroalimentaires des Céréales), the ANRT (Association Nationale de la Recherche Technique), and the ‘Ministère de l’Enseignement supérieur et de la Recherche’ as part of the National Integrated Research Project ‘RARE fusariotoxines 2003–2007’. We would like to thank Thérèse Ouellet and Shea Miller for review of an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne-Laure Boutigny or Christian Barreau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutigny, AL., Richard-Forget, F. & Barreau, C. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol 121, 411–423 (2008). https://doi.org/10.1007/s10658-007-9266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9266-x

Keywords

Navigation