Skip to main content

Advertisement

Log in

Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies

  • META-ANALYSIS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Although consumption of sugar-sweetened beverages (SSBs) and artificially sweetened beverages (ASBs) has increasingly been linked with obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality, evidence remains conflicted and dose–response meta-analyses of the associations are lacking. We conducted an updated meta-analysis to synthesize the knowledge about their associations and to explore their dose–response relations. We comprehensively searched PubMed, EMBASE, Web of Science, and Open Grey up to September 2019 for prospective cohort studies investigating the associations in adults. Summary relative risks (RRs) and 95% confidence intervals (CIs) were estimated for the dose–response association. Restricted cubic splines were used to evaluate linear/non-linear relations. We included 39 articles in the meta-analysis. For each 250-mL/d increase in SSB and ASB intake, the risk increased by 12% (RR = 1.12, 95% CI 1.05–1.19, I2 = 67.7%) and 21% (RR = 1.21, 95% CI 1.09–1.35, I2 = 47.2%) for obesity, 19% (RR = 1.19, 95% CI 1.13–1.25, I2 = 82.4%) and 15% (RR = 1.15, 95% CI 1.05–1.26, I2 = 92.6%) for T2DM, 10% (RR = 1.10, 95% CI 1.06–1.14, I2 = 58.4%) and 8% (RR = 1.08, 95% CI 1.06–1.10, I2 = 24.3%) for hypertension, and 4% (RR = 1.04, 95% CI 1.01–1.07, I2 = 58.0%) and 6% (RR = 1.06, 95% CI 1.02–1.10, I2 = 80.8%) for all-cause mortality. For SSBs, restricted cubic splines showed linear associations with risk of obesity (Pnon-linearity = 0.359), T2DM (Pnon-linearity = 0.706), hypertension (Pnon-linearity = 0.510) and all-cause mortality (Pnon-linearity = 0.259). For ASBs, we found linear associations with risk of obesity (Pnon-linearity = 0.299) and T2DM (Pnon-linearity = 0.847) and non-linear associations with hypertension (Pnon-linearity = 0.019) and all-cause mortality (Pnon-linearity = 0.048). Increased consumption of SSBs and ASBs is associated with risk of obesity, T2DM, hypertension, and all-cause mortality. However, the results should be interpreted cautiously because the present analyses were based on only cohort but not intervention studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Azais-Braesco V, Sluik D, Maillot M, Kok F, Moreno LA. A review of total & added sugar intakes and dietary sources in Europe. Nutr J. 2017;16(1):6. https://doi.org/10.1186/s12937-016-0225-2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Drewnowski A, Rehm CD. Consumption of added sugars among US children and adults by food purchase location and food source. Am J Clin Nutr. 2014;100(3):901–7. https://doi.org/10.3945/ajcn.114.089458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shan Z, Rehm CD, Rogers G, et al. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016. JAMA. 2019;322(12):1178–87. https://doi.org/10.1001/jama.2019.13771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stern D, Piernas C, Barquera S, Rivera JA, Popkin BM. Caloric beverages were major sources of energy among children and adults in Mexico, 1999-2012. J Nutr. 2014;144(6):949–56. https://doi.org/10.3945/jn.114.190652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Popkin BM, Hawkes C. Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. The lancet. Diabetes Endocrinol. 2016;4(2):174–86. https://doi.org/10.1016/S2213-8587(15)00419-2.

    Article  Google Scholar 

  6. Powell ES, Smith-Taillie LP, Popkin BM. Added sugars intake across the distribution of US children and adult consumers: 1977–2012. J Acad Nutr Dietetics. 2016;116(10):1543-50 e1. https://doi.org/10.1016/j.jand.2016.06.003.

    Article  Google Scholar 

  7. Singh GM, Micha R, Khatibzadeh S, et al. Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: a systematic assessment of beverage intake in 187 countries. PLoS ONE. 2015;10(8):e0124845. https://doi.org/10.1371/journal.pone.0124845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Welsh JA, Sharma AJ, Grellinger L, Vos MB. Consumption of added sugars is decreasing in the United States. Am J Clin Nutr. 2011;94(3):726–34. https://doi.org/10.3945/ajcn.111.018366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mullee A, Romaguera D, Pearson-Stuttard J, et al. Association between soft drink consumption and mortality in 10 European countries. JAMA Intern Med. 2019. https://doi.org/10.1001/jamainternmed.2019.2478.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cohen L, Curhan G, Forman J. Association of sweetened beverage intake with incident hypertension. J Gen Intern Med. 2012;27(9):1127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ferreira-Pego C, Babio N, Bes-Rastrollo M, et al. Frequent consumption of sugar- and artificially sweetened beverages and natural and bottled fruit juices is associated with an increased risk of metabolic syndrome in a mediterranean population at high cardiovascular disease risk. J Nutr. 2016;146(8):1528–36.

    Article  PubMed  Google Scholar 

  12. Kwak JH, Jo G, Chung HK, Shin MJ. Association between sugar-sweetened beverage consumption and incident hypertension in Korean adults: a prospective study. Eur J Nutr. 2019;58(3):1009–17. https://doi.org/10.1007/s00394-018-1617-1.

    Article  CAS  PubMed  Google Scholar 

  13. Odegaard AO, Koh WP, Yuan JM, Pereira MA. Beverage habits and mortality in Chinese adults. J Nutr. 2015;145(3):595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paynter NP, Yeh HC, Voutilainen S, et al. Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol. 2006;164(11):1075–84. https://doi.org/10.1093/aje/kwj323.

    Article  PubMed  Google Scholar 

  15. Trumbo PR, Rivers CR. Systematic review of the evidence for an association between sugar-sweetened beverage consumption and risk of obesity. Nutr Rev. 2014;72(9):566–74. https://doi.org/10.1111/nure.12128.

    Article  PubMed  Google Scholar 

  16. Gardener H, Moon YP, Rundek T, Elkind MSV, Sacco RL. Diet soda and sugar-sweetened soda consumption in relation to incident diabetes in the Northern Manhattan study. Curr Dev Nutr. 2018;2(5):nzy008.

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am J Clin Nutr. 2011;93(6):1321–7. https://doi.org/10.3945/ajcn.110.007922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duffey KJ, Popkin BM. Shifts in patterns and consumption of beverages between 1965 and 2002. Obesity. 2007;15(11):2739–47. https://doi.org/10.1038/oby.2007.326.

    Article  PubMed  Google Scholar 

  19. Fakhouri TH, Kit BK, Ogden CL. Consumption of diet drinks in the United States, 20092010. NCHS Data Brief. 2012;109:1–8.

    Google Scholar 

  20. Duffey KJ, Gordon-Larsen P, Steffen LM, Jacobs DR Jr, Popkin BM. Drinking caloric beverages increases the risk of adverse cardiometabolic outcomes in the coronary artery risk development in young adults (CARDIA) study. Am J Clin Nutr. 2010;92(4):954–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinkle SN, Rawal S, Bjerregaard AA, et al. A prospective study of artificially sweetened beverage intake and cardiometabolic health among women at high risk. Am J Clin Nutr. 2019;110(1):221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the multi-ethnic study of atherosclerosis (MESA). Diabetes Care. 2009;32(4):688–94. https://doi.org/10.2337/dc08-1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakurai M, Nakamura K, Miura K, et al. Sugar-sweetened beverage and diet soda consumption and the 7-year risk for type 2 diabetes mellitus in middle-aged Japanese men. Eur J Nutr. 2014;53(4):1137–8.

    Article  CAS  PubMed  Google Scholar 

  24. Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruanpeng D, Thongprayoon C, Cheungpasitpom W, Harindhanavudhi T. Sugar and artificially sweetened beverages linked to obesity: a systematic review and meta-analysis. Qjm-an Inte J Medi. 2017;110(8):513–20. https://doi.org/10.1093/qjmed/hcx068.

    Article  CAS  Google Scholar 

  26. Schlesinger S, Neuenschwander M, Schwedhelm C, et al. Food groups and risk of overweight, obesity, and weight gain: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr. 2019;10(2):205–18.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Greenwood DC, Threapleton DE, Evans CEL, et al. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Br J Nutr. 2014;112(5):725–34.

    Article  CAS  PubMed  Google Scholar 

  28. Imamura F, O’Connor L, Ye Z, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med. 2016;50(8):496–504.

    Article  PubMed  Google Scholar 

  29. Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33(11):2477–83.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang M, Yu M, Fang L, Hu R-Y. Association between sugar-sweetened beverages and type 2 diabetes: a meta-analysis. J Diabetes Invest. 2015;6(3):360–6. https://doi.org/10.1111/jdi.12309.

    Article  CAS  Google Scholar 

  31. Schwingshackl L, Hoffmann G, Lampousi AM, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(5):363–75.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cheungpasitporn W, Thongprayoon C, Edmonds PJ, et al. Sugar and artificially sweetened soda consumption linked to hypertension: a systematic review and meta-analysis. Clin Exp Hypertens. 2015;37(7):587–93. https://doi.org/10.3109/10641963.2015.1026044.

    Article  CAS  PubMed  Google Scholar 

  33. Jayalath VH, de Souza RJ, Ha V, et al. Sugar-sweetened beverage consumption and incident hypertension: a systematic review and meta-analysis of prospective cohorts. Am J Clin Nutr. 2015;102(4):914–21. https://doi.org/10.3945/ajcn.114.102160.

    Article  CAS  PubMed  Google Scholar 

  34. Kim Y, Je Y. Prospective association of sugar-sweetened and artificially sweetened beverage intake with risk of hypertension. Arch Cardiovasc Dis. 2016;109(4):242–53.

    Article  PubMed  Google Scholar 

  35. Xi B, Huang Y, Reilly KH, et al. Sugar-sweetened beverages and risk of hypertension and CVD: a dose-response meta-analysis. Br J Nutr. 2015;113(5):709–17.

    Article  CAS  PubMed  Google Scholar 

  36. Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of hypertension: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr. 2017;8(6):793–803. https://doi.org/10.3945/an.117.017178.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73. https://doi.org/10.3945/ajcn.117.153148.

    Article  CAS  PubMed  Google Scholar 

  38. Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Clin Pract. 2016;70(10):791–805.

    Article  CAS  PubMed  Google Scholar 

  39. Stern D, Mazariegos M, Ortiz-Panozo E, et al. Sugar-sweetened soda consumption increases diabetes risk among Mexican women. J Nutr. 2019;149(5):795–803. https://doi.org/10.1093/jn/nxy298.

    Article  PubMed  Google Scholar 

  40. Papier K, D’Este C, Bain C, et al. Consumption of sugar-sweetened beverages and type 2 diabetes incidence in Thai adults: results from an 8-year prospective study. Nutr Diabetes. 2017;7(6):e283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang M, Quddus A, Stinson L, et al. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective women’s health initiative observational study. Am J Clin Nutr. 2017;106(2):614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirahatake KM, Jacobs DR, Shikany JM, et al. Cumulative intake of artificially sweetened and sugar-sweetened beverages and risk of incident type 2 diabetes in young adults: the coronary artery risk development in young adults (CARDIA) study. Am J Cli Nutr. 2019;110:733–41.

    Article  Google Scholar 

  43. Mossavar-Rahmani Y, Kamensky V, Manson JE, et al. Artificially sweetened beverages and stroke, coronary heart disease, and all-cause mortality in the women’s health initiative. Stroke. 2019;50(3):555–62.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ramne S, Alves Dias J, Gonzalez-Padilla E, et al. Association between added sugar intake and mortality is nonlinear and dependent on sugar source in 2 swedish population-based prospective cohorts. Am J Clin Nutr. 2019;109(2):411–23.

    Article  PubMed  Google Scholar 

  45. La Moher D, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):97. https://doi.org/10.1371/journal.pmed.1000097.

    Article  Google Scholar 

  46. Wells GA SB, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. Ottawa (Canada): Ottawa Health Research Institute.. Pediatrics [serial online] 2005:http//www.ohri.ca/programs/clinical_epidemiolgy/oxford (Accessed 2005). https://doi.org/10.1002/jrsm.1193.

  47. Lo TS, Chua S, Kao CC, Hsieh WC, Wu MP, Tseng LH. Prophylactic midurethral sling insertion during transvaginal pelvic reconstructive surgery for advanced prolapse patients with high-risk predictors of postoperative de novo stress urinary incontinence. Int Urogynecol J. 2019;30(9):1541–9.

    Article  PubMed  Google Scholar 

  48. Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes. JAMA. 2007;298(22):2654–64.

    Article  CAS  PubMed  Google Scholar 

  49. Bekkering GE, Harris RJ, Thomas S, et al. How much of the data published in observational studies of the association between diet and prostate or bladder cancer is usable for meta-analysis? Am J Epidemiol. 2008;167(9):1017–26. https://doi.org/10.1093/aje/kwn005.

    Article  PubMed  Google Scholar 

  50. Tamakoshi A, Lin Y, Kawado M, et al. Effect of coffee consumption on all-cause and total cancer mortality: findings from the JACC study. Eur J Epidemiol. 2011;26(4):285–93. https://doi.org/10.1007/s10654-011-9548-7.

    Article  PubMed  Google Scholar 

  51. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  52. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45(Pt A):139–45. https://doi.org/10.1016/j.cct.2015.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301–9.

    Article  CAS  PubMed  Google Scholar 

  54. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175(1):66–73. https://doi.org/10.1093/aje/kwr265.

    Article  PubMed  Google Scholar 

  55. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Araujo Pio CS, Marzolini S, Pakosh M, Grace SL. Effect of cardiac rehabilitation dose on mortality and morbidity: a systematic review and meta-regression analysis. Mayo Clin Proc. 2017;92(11):1644–59. https://doi.org/10.1016/j.mayocp.2017.07.019.

    Article  Google Scholar 

  57. Boggs DA, Rosenberg L, Coogan PF, Makambi KH, Adams-Campbell LL, Palmer JR. Restaurant foods, sugar-sweetened soft drinks, and obesity risk among young African American women. Ethn Dis. 2013;23(4):445–51.

    PubMed  Google Scholar 

  58. Dhingra R, Sullivan L, Jacques PF, et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116(5):480–8. https://doi.org/10.1161/circulationaha.107.689935.

    Article  PubMed  Google Scholar 

  59. Fresan U, Gea A, Bes-Rastrollo M, Ruiz-Canela M, Martinez-Gonzalez MA. Substitution models of water for other beverages, and the incidence of obesity and weight gain in the SUN cohort. Nutrients. 2016;8(11):688.

    Article  PubMed Central  Google Scholar 

  60. Funtikova AN, Subirana I, Gomez SF, et al. Soft drink consumption is positively associated with increased waist circumference and 10-year incidence of abdominal obesity in Spanish adults. J Nutr. 2015;145(2):328–34.

    Article  PubMed  Google Scholar 

  61. Bhupathiraju SN, Pan A, Malik VS, et al. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr. 2013;97(1):155–66. https://doi.org/10.3945/ajcn.112.048603.

    Article  CAS  PubMed  Google Scholar 

  62. Duffey KJ, Steffen LM, Van Horn L, Jacobs DR Jr, Popkin BM. Dietary patterns matter: diet beverages and cardiometabolic risks in the longitudinal coronary artery risk development in young adults (CARDIA) study. Am J Clin Nutr. 2012;95(4):909–15. https://doi.org/10.3945/ajcn.111.026682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eshak ES, Iso H, Mizoue T, Inoue M, Noda M, Tsugane S. Soft drink, 100% fruit juice, and vegetable juice intakes and risk of diabetes mellitus. Clin Nutr. 2013;32(2):300–8. https://doi.org/10.1016/j.clnu.2012.08.003.

    Article  CAS  PubMed  Google Scholar 

  64. Fagherazzi G, Vilier A, Saes Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l’Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2013;97(3):517–23. https://doi.org/10.3945/ajcn.112.050997.

    Article  CAS  PubMed  Google Scholar 

  65. Montonen J, Knekt P, Heliövaara M, Reunanen A. Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr. 2007;137:1447–54.

    Article  CAS  PubMed  Google Scholar 

  66. Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch Intern Med. 2008;168(14):1487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  67. O’Connor L, Imamura F, Lentjes MA, Khaw KT, Wareham NJ, Forouhi NG. Prospective associations and population impact of sweet beverage intake and type 2 diabetes, and effects of substitutions with alternative beverages. Diabetologia. 2015;58:1474–83. https://doi.org/10.1007/s00125-015-3572-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma J, Jacques PF, Meigs JB, et al. Sugar-sweetened beverage but not diet soda consumption is positively associated with progression of insulin resistance and prediabetes. J Nutr. 2016;146(12):2544–50. https://doi.org/10.3945/jn.116.234047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA. 2004;292:927–34.

    Article  CAS  PubMed  Google Scholar 

  70. Odegaard AO, Koh WP, Arakawa K, Yu MC, Pereira MA. Soft drink and juice consumption and risk of physician-diagnosed incident type 2 diabetes: the Singapore Chinese health study. Am J Epidemiol. 2010;171(6):701–8. https://doi.org/10.1093/aje/kwp452.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sayon-Orea C, Martinez-Gonzalez MA, Gea A, Alonso A, Pimenta AM, Bes-Rastrollo M. Baseline consumption and changes in sugar-sweetened beverage consumption and the incidence of hypertension: the SUN project. Clin Nutr. 2015;34(6):1133–40. https://doi.org/10.1016/j.clnu.2014.11.010.

    Article  PubMed  Google Scholar 

  72. Barrington WE, White E. Mortality outcomes associated with intake of fast-food items and sugar-sweetened drinks among older adults in the Vitamins and Lifestyle (VITAL) study. Public Health Nutr. 2016;19(18):3319–26. https://doi.org/10.1017/s1368980016001518.

    Article  PubMed  Google Scholar 

  73. Collin LJ, Judd S, Safford M, Vaccarino V, Welsh JA. Association of sugary beverage consumption with mortality risk in US adults: a secondary analysis of data from the REGARDS study. JAMA Netw Open. 2019;2(5):e193121. https://doi.org/10.1001/jamanetworkopen.2019.3121.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Paganini-Hill A, Kawas CH, Corrada MM. Non-alcoholic beverage and caffeine consumption and mortality: the leisure world cohort study. Prev Med. 2007;44(4):305–10.

    Article  PubMed  Google Scholar 

  75. Tasevska N, Park Y, Jiao L, Hollenbeck A, Subar AF, Potischman N. Sugars and risk of mortality in the NIH-AARP diet and health study. Am J Clin Nutr. 2014;99(5):1077–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu ZM, Tse SLA, Chen B, et al. Dietary sugar intake does not pose any risk of bone loss and non-traumatic fracture and is associated with a decrease in all-cause mortality among Chinese elderly: finding from an 11-year longitudinal study of Mr. and Ms. OS Hong Kong. Bone. 2018;116:154–61. https://doi.org/10.1016/j.bone.2018.07.011.

    Article  CAS  PubMed  Google Scholar 

  77. Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity. 2008;16(8):1894–900.

    Article  PubMed  Google Scholar 

  78. Malik VS, Hu FB. Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us. J Am Coll Cardiol. 2015;66(14):1615–24. https://doi.org/10.1016/j.jacc.2015.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hallfrisch J. Metabolic effects of dietary fructose. FASEB J: Off Publ Feder Am Soc Exp Biol. 1990;4(9):2652–60. https://doi.org/10.1096/fasebj.4.9.2189777.

    Article  CAS  Google Scholar 

  80. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002;76:911–22.

    Article  CAS  PubMed  Google Scholar 

  81. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51(7):2005–11. https://doi.org/10.2337/diabetes.51.7.2005.

    Article  CAS  PubMed  Google Scholar 

  82. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62(10):3307–15. https://doi.org/10.2337/db12-1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carran EL, White SJ, Reynolds AN, Haszard JJ, Venn BJ. Acute effect of fructose intake from sugar-sweetened beverages on plasma uric acid: a randomised controlled trial. Eur J Clin Nutr. 2016;70(9):1034–8. https://doi.org/10.1038/ejcn.2016.112.

    Article  CAS  PubMed  Google Scholar 

  84. Ramalingam L, Menikdiwela K, LeMieux M, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochimica et biophysica acta. Mol Basis Disease. 2017;1863(5):1106–14. https://doi.org/10.1016/j.bbadis.2016.07.019.

    Article  CAS  Google Scholar 

  85. Das UN. Renin-angiotensin-aldosterone system in insulin resistance and metabolic syndrome. J Transl Intern Med. 2016;4(2):66–72. https://doi.org/10.1515/jtim-2016-0022.

    Article  Google Scholar 

  86. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–21. https://doi.org/10.1056/NEJMra0800885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Park S, Blanck HM, Sherry B, Brener N, O’Toole T. Factors associated with sugar-sweetened beverage intake among United States high school students. J Nutr. 2012;142(2):306–12. https://doi.org/10.3945/jn.111.148536.

    Article  CAS  PubMed  Google Scholar 

  88. Bleich SN, Wolfson JAUS. adults and child snacking patterns among sugar-sweetened beverage drinkers and non-drinkers. Prev Med. 2015;72:8–14. https://doi.org/10.1016/j.ypmed.2015.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schwingshackl L, Bogensberger B, Hoffmann G. Diet quality as assessed by the healthy eating index, alternate healthy eating index, dietary approaches to stop hypertension score, and health outcomes: an updated systematic review and meta-analysis of cohort studies. J Acad Nutr Dietetics. 2018;118(1):74–100. https://doi.org/10.1016/j.jand.2017.08.024.

    Article  Google Scholar 

  90. Ludwig DS. Artificially sweetened beverages: cause for concern. JAMA. 2009;302(22):2477–8. https://doi.org/10.1001/jama.2009.1822.

    Article  PubMed  Google Scholar 

  91. Rother KI, Conway EM, Sylvetsky AC. How non-nutritive sweeteners influence hormones and health. Trends Endocrinol Metabol: TEM. 2018;29(7):455–67. https://doi.org/10.1016/j.tem.2018.04.010.

    Article  CAS  Google Scholar 

  92. Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6. https://doi.org/10.1038/nature13793.

    Article  CAS  PubMed  Google Scholar 

  93. Bryant C, McLaughlin J. Low calorie sweeteners: evidence remains lacking for effects on human gut function. Physiol Behav. 2016;164(Pt B):482–5. https://doi.org/10.1016/j.physbeh.2016.04.026.

    Article  CAS  PubMed  Google Scholar 

  94. Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Exp Rev Gastroenterol Hepatol. 2019;13(1):3–15. https://doi.org/10.1080/17474124.2019.1543023.

    Article  CAS  Google Scholar 

  95. Green E, Murphy C. Altered processing of sweet taste in the brain of diet soda drinkers. Physiol Behav. 2012;107(4):560–7. https://doi.org/10.1016/j.physbeh.2012.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma Y, He FJ, Yin Y, Hashem KM, MacGregor GA. Gradual reduction of sugar in soft drinks without substitution as a strategy to reduce overweight, obesity, and type 2 diabetes: a modelling study. The lancet. Diabetes Endocrinol. 2016;4(2):105–14. https://doi.org/10.1016/s2213-8587(15)00477-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Laura Smales (BioMedEditing) for proofreading of the manuscript.

Funding

This meta-analysis was supported by the National Natural Science Foundation of China (Grant Nos. 81373074, 81402752 and 81673260); the Natural Science Foundation of Guangdong Province (Grant No. 2017A030313452); the Medical Research Foundation of Guangdong Province (Grant No. A2017181); and the Science and Technology Development Foundation of Shenzhen (Grant Nos. CYJ20140418091413562, JCYJ20160307155707264, JCYJ20170412110537191, and JCYJ20170302143855721).

Author information

Authors and Affiliations

Authors

Contributions

PQ, QL and MZ designed research; PQ, QL and YZ conducted the meta-analysis and drafted the manuscript; PQ, QL, YZ, QZ, CG, DZ, GT, and DL analyzed the data; RQ, MH, SH, XW, YL, YF, YZ, XY, FH, DH, MZ revised the manuscript. MZ had primary responsibility for final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, P., Li, Q., Zhao, Y. et al. Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies. Eur J Epidemiol 35, 655–671 (2020). https://doi.org/10.1007/s10654-020-00655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-020-00655-y

Keywords

Navigation