Skip to main content

Advertisement

Log in

Quantification of biological age as a determinant of age-related diseases in the Rotterdam Study: a structural equation modeling approach

  • AGEING
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Chronological age alone is not a sufficient measure of the true physiological state of the body. The aims of the present study were to: (1) quantify biological age based on a physiological biomarker composite model; (2) and evaluate its association with death and age-related disease onset in the setting of an elderly population. Using structural equation modeling we computed biological age for 1699 individuals recruited from the first and second waves of the Rotterdam study. The algorithm included nine physiological parameters (c-reactive protein, creatinine, albumin, total cholesterol, cytomegalovirus optical density, urea nitrogen, alkaline phosphatase, forced expiratory volume and systolic blood pressure). We assessed the association between biological age, all-cause mortality, all-cause morbidity and specific age-related diseases over a median follow-up of 11 years. Biological age, compared to chronological age or the traditional biomarkers of age-related diseases, showed a stronger association with all-cause mortality (HR 1.15 vs. 1.13 and 1.10), all-cause morbidity (HR 1.06 vs. 1.05 and 1.03), stroke (HR 1.17 vs. 1.08 and 1.04), cancer (HR 1.07 vs. 1.04 and 1.02) and diabetes mellitus (HR 1.12 vs. 1.01 and 0.98). Individuals who were biologically younger exhibited a healthier life-style as reflected in their lower BMI (P < 0.001) and lower incidence of stroke (P < 0.001), cancer (P < 0.01) and diabetes mellitus (P = 0.02). Collectively, our findings suggest that biological age based on the biomarker composite model of nine physiological parameters is a useful construct to assess individuals 65 years and older at increased risk for specific age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hayflick L. The future of ageing. Nature. 2000;408(6809):267–9.

    Article  CAS  PubMed  Google Scholar 

  2. Sebastiani P, Thyagarajan B, Sun F, et al. Biomarker signatures of aging. Aging Cell. 2017;16(2):329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608. https://doi.org/10.1001/jama.2013.13805.

    Article  CAS  PubMed  Google Scholar 

  4. Burch JB, Augustine AD, Frieden LA, et al. Advances in geroscience: impact on healthspan and chronic disease. J Gerontol Ser A, Biol Sci Med Sci. 2014;69(Suppl 1):S1–3. https://doi.org/10.1093/gerona/glu041.

    Article  Google Scholar 

  5. Comfort A. Test-battery to measure ageing-rate in man. Lancet. 1969;294(7635):1411–5.

    Article  Google Scholar 

  6. Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev. 2006;127(3):240–8.

    Article  PubMed  Google Scholar 

  7. Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol Ser A: Biomed Sci Med Sci. 2012;68(6):667–74.

    Article  Google Scholar 

  8. Ikram MA, Brusselle GGO, Murad SD, et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol. 2017;32:807–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National health and nutrition examination survey data. Hyattsville, MD: CDC. http://www.cdc.gov/nchs/nhanes/nh3data.htm. Accessed May 2018.

  10. Levine ME. Response to Dr. Mitnitski’s and Dr. Rockwood’s letter to the editor: biological age revisited. J Gerontol Ser A: Biomed Sci Med Sci. 2013;69(3):297–8.

    Article  Google Scholar 

  11. Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci USA. 2015;112(30):E4104–10. https://doi.org/10.1073/pnas.1506264112.

    Article  CAS  PubMed  Google Scholar 

  12. Yoo J, Kim Y, Cho ER, Jee SH. Biological age as a useful index to predict seventeen-year survival and mortality in Koreans. BMC Geriatr. 2017;17(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kreisberg RA, Kasim S. Cholesterol metabolism and aging. Am J Med. 1987;82(1b):54–60.

    Article  CAS  PubMed  Google Scholar 

  14. Hollingsworth JW, Hashizume A, Jablon S. Correlations between tests of aging in Hiroshima subjects—an attempt to define “physiologic age”. Yale J Biol Med. 1965;38(1):11–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Takeda H, Inada H, Inoue M, Yoshikawa H, Abe H. Evaluation of biological age and physical age by multiple regression analysis. Med Inform = Medecine et informatique. 1982;7(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kroll J, Saxtrup O. On the use of regression analysis for the estimation of human biological age. Biogerontology. 2000;1(4):363–8.

    Article  CAS  PubMed  Google Scholar 

  17. Bae CY, Kang YG, Kim S, et al. Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr. 2008;47(2):253–65. https://doi.org/10.1016/j.archger.2007.08.009.

    Article  CAS  PubMed  Google Scholar 

  18. Hofecker G, Skalicky M, Kment A, Niedermuller H. Models of the biological age of the rat. I. A factor model of age parameters. Mech Ageing Dev. 1980;14(3–4):345–59.

    Article  CAS  PubMed  Google Scholar 

  19. Skalicky M, Hofecker G, Kment A, Niedermuller H. Models of the biological age of the rat. II. Multiple regression models in the study on influencing aging. Mech Ageing Dev. 1980;14(3–4):361–77.

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura E, Miyao K, Ozeki T. Assessment of biological age by principal component analysis. Mech Ageing Dev. 1988;46(1–3):1–18.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura E, Miyao K. A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol Ser A, Biol Sci Med Sci. 2007;62(10):1096–105.

    Article  Google Scholar 

  22. MacDonald SW, Dixon RA, Cohen AL, Hazlitt JE. Biological age and 12-year cognitive change in older adults: findings from the Victoria longitudinal study. Gerontology. 2004;50(2):64–81. https://doi.org/10.1159/000075557.

    Article  PubMed  Google Scholar 

  23. Barzilai N, Guarente L, Kirkwood TB, Partridge L, Rando TA, Slagboom PE. The place of genetics in ageing research. Nat Rev Genet. 2012;13(8):589–94. https://doi.org/10.1038/nrg3290.

    Article  CAS  PubMed  Google Scholar 

  24. Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA. 2012;109(26):10522–7. https://doi.org/10.1073/pnas.1120658109.

    Article  Google Scholar 

  25. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  26. Belsky DW, Moffitt TE, Cohen AA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2017;187(6):1220–30.

    PubMed Central  Google Scholar 

  27. Crimmins E, Vasunilashorn S, Kim JK, Alley D. Biomarkers related to aging in human populations. Adv Clin Chem. 2008;46:161–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Longo VD, Antebi A, Bartke A, et al. Interventions to slow aging in humans: are we ready? Aging Cell. 2015;14(4):497–510. https://doi.org/10.1111/acel.12338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157(7):1515–26. https://doi.org/10.1016/j.cell.2014.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moffitt TE, Belsky DW, Danese A, Poulton R, Caspi A. The longitudinal study of aging in human young adults: knowledge gaps and research agenda. J Gerontol Ser A, Biol Sci Med Sci. 2017;72(2):210–5. https://doi.org/10.1093/gerona/glw191.

    Article  Google Scholar 

  31. Kirkland JL. Translating advances from the basic biology of aging into clinical application. Exp Gerontol. 2013;48(1):1–5. https://doi.org/10.1016/j.exger.2012.11.014.

    Article  CAS  PubMed  Google Scholar 

  32. Kirkwood TB, Austad SN. Why do we age? Nature. 2000;408(6809):233–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The dedication and commitment by which study participants, general practitioners, and pharmacists of the Ommoord district contribute to the Rotterdam Study are gratefully acknowledged. We thank all staff at the Rotterdam Study research center, facilitating assessment of participants throughout the years, and Frank J.A. van Rooij as data manager.

Funding

The Rotterdam Study is sponsored by the Erasmus Medical Centre and Erasmus University Rotterdam, The Netherlands Organization for Scientific Research (NWO), The Netherlands Organization for Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIDE), The Netherlands Genomics Initiative, the Ministry of Education, Culture and Science, the Ministry of Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. Further support was obtained from the Netherlands Consortium for Healthy Ageing. This study is supported by Janssen Prevention Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reem Waziry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waziry, R., Gras, L., Sedaghat, S. et al. Quantification of biological age as a determinant of age-related diseases in the Rotterdam Study: a structural equation modeling approach. Eur J Epidemiol 34, 793–799 (2019). https://doi.org/10.1007/s10654-019-00497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-019-00497-3

Keywords

Navigation