Skip to main content
Log in

Physical activity is associated with lower arterial stiffness in older adults: results of the SAPALDIA 3 Cohort Study

  • PHYSICAL ACTIVITY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Associations of physical activity (PA) intensity with arterial stiffness in older adults at the population level are insufficiently studied. We examined cross-sectional associations of self-reported PA intensities with arterial stiffness in elderly Caucasians of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults. Mixed central and peripheral arterial stiffness was measured oscillometrically by the cardio-ankle vascular index (CAVI) and brachial-ankle pulse wave velocity (baPWV). The self-reported International Physical Activity Questionnaire long version was administered to classify each subject’s PA level. We used univariable and multivariable mixed linear and logistic regression models for analyses in 1908 persons aged 50 years and older. After adjustment for several confounders moderate, vigorous and total PA were inversely associated with CAVI (p = 0.02–0.03). BaPWV showed negative and marginally significant associations with vigorous and moderate PA (each p = 0.06), but not with total PA (p = 0.28). Increased arterial stiffness (CAVI ≥ 9, upper tertile) was inversely and significantly associated with vigorous PA [odds ratio (OR) 0.65, 95 % confidence interval (CI) 0.48–0.88], and marginally significantly with total PA (OR 0.76, 95 % CI 0.57–1.02) and moderate PA (OR 0.75, 95 % CI 0.56–1.01). The odds ratio for baPWV ≥ 14.4 was 0.67 (95 % CI 0.48–0.93) across the vigorous PA levels, and was non-significant across the total (OR 0.91, 95 % CI 0.66–1.23) and moderate PA levels (OR 0.94, 95 % CI 0.69–1.28). In this general Caucasian population of older adults higher levels especially of vigorous PA were associated with lower arterial stiffness. These data support the importance of PA for improving cardiovascular health in elderly people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. UN General Assembly. Political declaration of the high-level meeting of the general assembly on the prevention and control of non-communicable diseases [Internet]. 2012 [cited 2012 Sep 19]. http://cdrwww.who.int/entity/kobe_centre/publications/Annual_Report_2011e.pdf.

  2. Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The Lancet. 2012;380:219–29.

    Article  Google Scholar 

  3. Long G, Watkinson C, Brage S, Morris J, Tuxworth B, Fentem P, et al. Mortality benefits of population-wide adherence to national physical activity guidelines: a prospective cohort study. Eur J Epidemiol. 2014;30:71–9.

  4. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102:1270–5.

    Article  CAS  PubMed  Google Scholar 

  5. Seals DR, Walker AE, Pierce GL, Lesniewski LA. Habitual exercise and vascular ageing. J Physiol. 2009;587:5541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vaitkevicius PV, Fleg JL, Engel JH, O’Connor FC, Wright JG, Lakatta LE, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88:1456–62.

    Article  CAS  PubMed  Google Scholar 

  7. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  8. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932–43.

    Article  CAS  PubMed  Google Scholar 

  9. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54:3–10.

    Article  CAS  PubMed  Google Scholar 

  10. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2012;33:1635–701.

    Article  CAS  PubMed  Google Scholar 

  11. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423–34.

    Article  PubMed  Google Scholar 

  12. Ried-Larsen M, Grøntved A, Kristensen PL, Froberg K, Andersen LB. Moderate-and-vigorous physical activity from adolescence to adulthood and subclinical atherosclerosis in adulthood: prospective observations from the European Youth Heart Study. Br J Sports Med. 2015;49:107–12.

  13. Pälve KS, Pahkala K, Magnussen CG, Koivistoinen T, Juonala M, Kähönen M, et al. Association of physical activity in childhood and early adulthood with carotid artery elasticity 21 years later: the cardiovascular risk in Young Finns Study. J Am Heart Assoc. 2014;3:e000594.

    Article  PubMed  PubMed Central  Google Scholar 

  14. van de Laar RJ, Ferreira I, van Mechelen W, Prins MH, Twisk JW, Stehouwer CD. Lifetime vigorous but not light-to-moderate habitual physical activity impacts favorably on carotid stiffness in young adults: the Amsterdam growth and health longitudinal study. Hypertension. 2010;55:33–9.

    Article  PubMed  Google Scholar 

  15. van de Laar RJ, Ferreira I, van Mechelen W, Prins MH, Twisk JW, Stehouwer CD. habitual physical activity and peripheral arterial compliance in young adults: the Amsterdam growth and health longitudinal study. Am J Hypertens. 2011;24:200–8.

    Article  PubMed  Google Scholar 

  16. Brunner EJ, Shipley MJ, Witte DR, Singh-Manoux A, Britton AR, Tabak AG, et al. Arterial stiffness, physical function, and functional limitation: the Whitehall II Study. Hypertension. 2011;57:1003–9.

    Article  CAS  PubMed  Google Scholar 

  17. Watson NL, Sutton-Tyrrell K, Youk AO, Boudreau RM, Mackey RH, Simonsick EM, et al. Arterial stiffness and gait speed in older adults with and without peripheral arterial disease. Am J Hypertens. 2011;24:90–5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gando Y, Yamamoto K, Murakami H, Ohmori Y, Kawakami R, Sanada K, et al. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension. 2010;56:540–6.

    Article  CAS  PubMed  Google Scholar 

  19. Sugawara J, Otsuki T, Tanabe T, Hayashi K, Maeda S, Matsuda M. Physical activity duration, intensity, and arterial stiffening in postmenopausal women. Am J Hypertens. 2006;19:1032–6.

    Article  PubMed  Google Scholar 

  20. Hawkins M, Gabriel KP, Cooper J, Storti KL, Sutton-Tyrrell K, Kriska A. The impact of change in physical activity on change in arterial stiffness in overweight or obese sedentary young adults. Vasc Med. 2014;19:257–63.

  21. Wang HL, Zhang TM, Zhu WL, Wu H, Yan SF. Acute effects of continuous and interval low-intensity exercise on arterial stiffness in healthy young men. Eur J Appl Physiol. 2014;114:1385–92.

    Article  CAS  PubMed  Google Scholar 

  22. Ackermann-Liebrich U, Kuna-Dibbert B, Probst-Hensch NM, Schindler C, Felber Dietrich D, Stutz EZ, et al. Follow-up of the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991–2003: methods and characterization of participants. Soz Präventivmedizin. 2005;50:245–63.

    Article  Google Scholar 

  23. Martin BW, Ackermann-Liebrich U, Leuenberger P, Künzli N, Stutz EZ, Keller R, et al. SAPALDIA: methods and participation in the cross-sectional part of the Swiss Study on Air Pollution and Lung Diseases in Adults. Soz Präventivmedizin. 1997;42:67–84.

    Article  CAS  Google Scholar 

  24. Li Y, Cordes M, Recio-Rodriguez JI, Garcia-Ortiz L, Hanssen H, Schmidt-Trucksass A. Diurnal variation of arterial stiffness in healthy individuals of different ages and patients with heart disease. Scand J Clin Lab Invest. 2014;74:155–62.

    Article  PubMed  Google Scholar 

  25. Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13:101–7.

    Article  PubMed  Google Scholar 

  26. Schillaci G, Battista F, Settimi L, Anastasio F, Pucci G. Cardio-ankle vascular index and subclinical heart disease. Hypertens Res. 2015;38:68–73.

    Article  PubMed  Google Scholar 

  27. Shirai K, Song M, Suzuki J. Contradictory effects of β1- and α1- aderenergic receptor blockers on cardio-ankle vascular stiffness index (CAVI). J Atheroscler Thromb. 2011;18:49–55.

    Article  CAS  PubMed  Google Scholar 

  28. Endes S, Caviezel S, Dratva J, Schaffner E, Schindler C, Rothe T, et al. Reproducibility of oscillometrically measured arterial stiffness indices: results of the SAPALDIA 3 cohort study. Scand J Clin Lab Invest. 2015;75:170–6.

    Article  PubMed  Google Scholar 

  29. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res. 2002;25:359–64.

    Article  PubMed  Google Scholar 

  30. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.

    Article  PubMed  Google Scholar 

  31. IPAQ. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ)—short and long forms [Internet]. 2005. http://www.ipaq.ki.se/scoring.pdf.

  32. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.

    Article  PubMed  Google Scholar 

  33. Aoyagi Y, Park H, Kakiyama T, Park S, Yoshiuchi K, Shephard RJ. Yearlong physical activity and regional stiffness of arteries in older adults: the Nakanojo Study. Eur J Appl Physiol. 2010;109:455–64.

    Article  PubMed  Google Scholar 

  34. Fujimoto N, Prasad A, Hastings JL, Arbab-Zadeh A, Bhella PS, Shibata S, et al. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation. 2010;122:1797–805.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2014;9:e110034.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Hanssen H, Cordes M, Rossmeissl A, Endes S, Schmidt-Trucksäss A. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: a review. Eur J Sport Sci. 2014;0:1–15.

    Google Scholar 

  37. Suboc TB, Strath SJ, Dharmashankar K, Coulliard A, Miller N, Wang J, et al. Relative importance of step count, intensity, and duration on physical activity’s impact on vascular structure and function in previously sedentary older adults. J Am Heart Assoc. 2014;3:e000702.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Montero D, Roche E, Martinez-Rodriguez A. The impact of aerobic exercise training on arterial stiffness in pre- and hypertensive subjects: a systematic review and meta-analysis. Int J Cardiol. 2014;173:361–8.

    Article  PubMed  Google Scholar 

  39. Montero D, Roberts CK, Vinet A. Effect of aerobic exercise training on arterial stiffness in obese populations: a systematic review and meta-analysis. Sports Med. 2014;44:833–43.

    Article  PubMed  Google Scholar 

  40. Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br. J Sports Med [Internet]. 2012 [cited 2012 May 10]. http://bjsm.bmj.com/content/early/2012/01/20/bjsports-2012-090488.

  41. Nakamura K, Tomaru T, Yamamura S, Miyashita Y, Shirai K, Noike H. Cardio-ankle vascular index is a candidate predictor of coronary atherosclerosis. Circ J. 2008;72:598–604.

    Article  PubMed  Google Scholar 

  42. Park JB, Park HE, Choi SY, Kim MK, Oh BH. Relation between cardio-ankle vascular index and coronary artery calcification or stenosis in asymptomatic subjects. Thromb: J Atheroscler; 2013.

    Google Scholar 

  43. Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension. 2012;60:556–62.

    Article  CAS  PubMed  Google Scholar 

  44. Kim J-H, Rhee M-Y, Kim Y-S, Bae J-H, Nah D-Y, Kim Y-K, et al. Brachial-ankle pulse wave velocity for the prediction of the presence and severity of coronary artery disease. Clin Exp Hypertens. 2013;36:404–9.

    Article  PubMed  Google Scholar 

  45. Takaki A, Ogawa H, Wakeyama T, Iwami T, Kimura M, Hadano Y, et al. Cardio-ankle vascular index is a new noninvasive parameter of arterial stiffness. Circ J. 2007;71:1710–4.

    Article  CAS  PubMed  Google Scholar 

  46. Yambe T, Yoshizawa M, Saijo Y, Yamaguchi T, Shibata M, Konno S, et al. Brachio-ankle pulse wave velocity and cardio-ankle vascular index (CAVI). Biomed Pharmacother. 2004;58:S95–8.

    Article  PubMed  Google Scholar 

  47. Heffernan KS, Tarzia BJ, Kasprowicz AG, Lefferts WK, Hatanaka M, Jae SY. Self-reported sitting time is associated with higher pressure from wave reflections independent of physical activity levels in healthy young adults. Am J Hypertens. 2013;26:1017–23.

    Article  PubMed  Google Scholar 

  48. Recio-Rodriguez JI, Gomez-Marcos MA, Patino-Alonso MC, Romaguera-Bosch M, Grandes G, Menendez-Suarez M, et al. Association of television viewing time with central hemodynamic parameters and the radial augmentation index in adults. Am J Hypertens. 2013;26:488–94.

    Article  PubMed  Google Scholar 

  49. Huynh QL, Blizzard CL, Sharman JE, Magnussen CG, Dwyer T, Venn AJ. The cross-sectional association of sitting time with carotid artery stiffness in young adults. BMJ Open. 2014;4:e004384.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abu-Omar K, Rütten A. Relation of leisure time, occupational, domestic, and commuting physical activity to health indicators in Europe. Prev Med. 2008;47:319–23.

    Article  PubMed  Google Scholar 

  51. Swiss Federal Statistical Office FSO. Swiss Health Survey 2012 [Internet]. 2013. http://www.bfs.admin.ch/bfs/portal/en/index/themen/14/22/publ.html?publicationID=5355.

  52. Lamprecht M, Fischer A, Stamm H. Sport Schweiz 2014—Sportaktivität und Sportinteresse der Schweizer Bevölkerung [Internet]. Magglingen: Bundesamt für Sport BASPO; 2014 [cited 2014 Nov 12]. http://www.baspo.admin.ch/internet/baspo/de/home/aktuell/Sport_Schweiz_2014.html.

  53. TNS Opinion and Social at the request of the Directorate-General for Education and Culture. Special Eurobarometer: Sport and Physical Activity. 2014 [cited 2014 Nov 12]. http://www.listanet.it/attachments/article/7/eurobarometer%202014.pdf.

  54. Goto A, Morita A, Goto M, Sasaki S, Miyachi M, Aiba N, et al. Validity of diabetes self-reports in the Saku diabetes study. J Epidemiol. 2013;23:295–300.

    Article  PubMed  Google Scholar 

  55. Wada K, Yatsuya H, Ouyang P, Otsuka R, Mitsuhashi H, Takefuji S, et al. Self-reported medical history was generally accurate among Japanese workplace population. J Clin Epidemiol. 2009;62:306–13.

    Article  PubMed  Google Scholar 

  56. Colditz GA, Martin P, Stampfer MJ, Willett WC, Sampson L, Rosner B, et al. Validation of questionnaire information on risk factors and disease outcomes in a prospective cohort study of women. Am J Epidemiol. 1986;123:894–900.

    CAS  PubMed  Google Scholar 

  57. Okura Y, Urban LH, Mahoney DW, Jacobsen SJ, Rodeheffer RJ. Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. J Clin Epidemiol. 2004;57:1096–103.

    Article  PubMed  Google Scholar 

  58. Glintborg B, Hillestrøm PR, Olsen LH, Dalhoff KP, Poulsen HE. Are patients reliable when self-reporting medication use? Validation of structured drug interviews and home visits by drug analysis and prescription data in acutely hospitalized patients1. J Clin Pharmacol. 2007;47:1440–9.

    Article  CAS  PubMed  Google Scholar 

  59. Heesch KC, van Uffelen JG, Hill RL, Brown WJ. What do IPAQ questions mean to older adults? Lessons from cognitive interviews. Int J Behav Nutr Phys Act. 2010;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brown WJ, Trost SG, Bauman A, Mummery K, Owen N. Test–retest reliability of four physical activity measures used in population surveys. J Sci Med Sport Sports Med. 2004;7:205–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank for the excellent work of the technical and administrative support, the medical teams and fieldworkers at the local study sites, the SAPALDIA team and the members of the Department of Sport, Exercise and Health (DSBG) for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Endes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Sources of funding

This work was supported by the Swiss National Science Foundation (SNSF) (Grant 147022) and an unrestricted grant of Fukuda Denshi (Tokyo, Japan) to AST. For the complete SAPALDIA acknowledgement and SAPALDIA sources of funding please see Supplementary Material 1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

10654_2015_76_MOESM2_ESM.tiff

Fig. S1 Box plots of cardio-ankle-vascular-index (CAVI) and brachial-ankle pulse wave velocity (baPWV) by sex and age. Box represents 25th percentile (lower edge), median (middle bar) and 75th percentile (upper edge). Whiskers show the extent of the rest of the data; points indicate outliers. (TIFF 2307 kb)

10654_2015_76_MOESM3_ESM.tiff

Fig. S2 Fully adjusted (Model 4) means of cardio-ankle-vascular-index (CAVI) over mean arterial pressure by sex and total physical activity (PA) levels (low, medium, high). (TIFF 2280 kb)

10654_2015_76_MOESM4_ESM.tiff

Fig. S3 Marginal probability of cardio-ankle vascular index (CAVI) >=9 and brachial-ankle pulse wave velocity (baPWV) >=14.4 m/s across total, vigorous and moderate physical activity (PA) levels. * p < 0.05 compared to low PA level. (TIFF 2315 kb)

Supplementary material 5 (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endes, S., Schaffner, E., Caviezel, S. et al. Physical activity is associated with lower arterial stiffness in older adults: results of the SAPALDIA 3 Cohort Study. Eur J Epidemiol 31, 275–285 (2016). https://doi.org/10.1007/s10654-015-0076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-015-0076-8

Keywords

Navigation