Skip to main content
Log in

Maternal smoking during pregnancy and offspring type 1 diabetes mellitus risk: accounting for HLA haplotype

  • PERINATAL EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The main objective of this study was to investigate the risk of type 1 diabetes mellitus (T1D) in children exposed to tobacco smoking in utero, also taking genetic predisposition as expressed by HLA haplotype into account. In Skåne, the southernmost county of Sweden, all children born 1999–2005 who developed T1D were registered, resulting in 344 cases. For each child with T1D, three control children, matched for HLA haplotype and birthyear, were selected. Information on prenatal smoking exposure was retrieved from a regional birth register. Conditional logistic regressions were used to evaluate T1D risk following prenatal smoking exposure. In these data, maternal smoking in early pregnancy was associated with a higher risk of her child developing T1D [odds ratio (OR) 2.83; 95 % confidence interval (CI) 1.67–4.80 for 1–9 cigarettes/day, and OR 3.91; 95 % CI 1.22–12.51 for >9 cigarettes/day]. Results remained through all adjustments and sensitivity analyses. When genetic predisposition in terms of HLA haplotype was taken into account, we found that children exposed to smoking during fetal life were at higher risk of developing T1D in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

DiPiS:

Diabetes Prediction in Skåne

HLA:

Human leukocyte antigen

MBR:

Medical Birth Register

PRSR:

Perinatal Revision South Register

T1D:

Type 1 diabetes mellitus

T2D:

Type 2 diabetes mellitus

References

  1. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia. 1992;35(11):1060–7.

    Article  CAS  PubMed  Google Scholar 

  2. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52(4):1052–5.

    Article  CAS  PubMed  Google Scholar 

  3. Rotter JI, Landaw EM. Measuring the genetic contribution of a single locus to a multilocus disease. Clin Genet. 1984;26(6):529–42.

    Article  CAS  PubMed  Google Scholar 

  4. Pociot F, Akolkar B, Concannon P, et al. Genetics of type 1 diabetes: What’s next? Diabetes. 2010;59(7):1561–71. doi:10.2337/db10-0076.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. EringsmarkRegnell S, Lernmark A. The environment and the origins of islet autoimmunity and type 1 diabetes. Diabet Med. 2013;30(2):155–60. doi:10.1111/dme.12099.

    Article  CAS  Google Scholar 

  6. Mehers KL, Gillespie KM. The genetic basis for type 1 diabetes. Br Med Bull. 2008;88(1):115–29. doi:10.1093/bmb/ldn045.

    Article  CAS  PubMed  Google Scholar 

  7. Ounissi-Benkalha H, Polychronakos C. The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med. 2008;14(6):268–75. doi:10.1016/j.molmed.2008.04.002.

    Article  CAS  PubMed  Google Scholar 

  8. Erlich H, Valdes AM, Noble J, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57(4):1084–92. doi:10.2337/db07-1331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in type I diabetes and associated disorders. Diabetologia. 2002;45(5):605–22. doi:10.1007/s00125-002-0781-1.

    Article  CAS  PubMed  Google Scholar 

  10. Haynes A, Cooper MN, Bower C, Jones TW, Davis EA. Maternal smoking during pregnancy and the risk of childhood type 1 diabetes in Western Australia. Diabetologia. 2014;57(3):469–72. doi:10.1007/s00125-013-3122-7.

    Article  CAS  PubMed  Google Scholar 

  11. Robertson L, Harrild K. Maternal and neonatal risk factors for childhood type 1 diabetes: a matched case–control study. BMC Public Health. 2010;10:281. doi:10.1186/1471-2458-10-281.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Marshall AL, Chetwynd A, Morris JA, et al. Type 1 diabetes mellitus in childhood: a matched case control study in Lancashire and Cumbria, UK. Diabet Med. 2004;21(9):1035–40. doi:10.1111/j.1464-5491.2004.01282.x.

    Article  CAS  PubMed  Google Scholar 

  13. Lynch KF. Perinatal determinants of type 1 diabetes—a social epidemiological perspective [Doctoral dissertation]. Malmö: Lund university; 2009.

    Google Scholar 

  14. Dahlquist G, Kallen B. Maternal-child blood group incompatibility and other perinatal events increase the risk for early-onset type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(7):671–5.

    Article  CAS  PubMed  Google Scholar 

  15. Svensson J, Carstensen B, Mortensen HB, Borch-Johnsen K. Early childhood risk factors associated with type 1 diabetes: Is gender important? Eur J Epidemiol. 2005;20(5):429–34.

    Article  PubMed  Google Scholar 

  16. Ievins R, Roberts SE, Goldacre MJ. Perinatal factors associated with subsequent diabetes mellitus in the child: record linkage study. Diabet Med. 2007;24(6):664–70. doi:10.1111/j.1464-5491.2007.02147.x.

    Article  CAS  PubMed  Google Scholar 

  17. Toschke AM, Ehlin A, Koletzko B, Montgomery SM. Paternal smoking is associated with a decreased prevalence of type 1 diabetes mellitus among offspring in two national British birth cohort studies (NCDS and BCS70). J Perinat Med. 2007;35(1):43–7. doi:10.1515/jpm.2007.006.

    Article  PubMed  Google Scholar 

  18. Stene LC, Barriga K, Norris JM, et al. Perinatal factors and development of islet autoimmunity in early childhood: the diabetes autoimmunity study in the young. Am J Epidemiol. 2004;160(1):3–10. doi:10.1093/aje/kwh159.

    Article  PubMed  Google Scholar 

  19. Group DP. Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet Med. 2006;23(8):857–66. doi:10.1111/j.1464-5491.2006.01925.x.

    Article  Google Scholar 

  20. American Diabetes Association. Executive summary: standards of medical care in diabetes—2014. Diabetes Care. 2014;37(Supplement 1):S5–13. doi:10.2337/dc14-S005.

  21. Larsson HE, Lynch K, Lernmark B, et al. Diabetes-associated HLA genotypes affect birthweight in the general population. Diabetologia. 2005;48(8):1484–91. doi:10.1007/s00125-005-1813-4.

    Article  CAS  PubMed  Google Scholar 

  22. Larsson HE, Hansson G, Carlsson A, et al. Children developing type 1 diabetes before 6 years of age have increased linear growth independent of HLA genotypes. Diabetologia. 2008;51(9):1623–30. doi:10.1007/s00125-008-1074-0.

    Article  PubMed  Google Scholar 

  23. George L, Granath F, Johansson AL, Cnattingius S. Self-reported nicotine exposure and plasma levels of cotinine in early and late pregnancy. Acta Obstet Gynecol Scand. 2006;85(11):1331–7. doi:10.1080/00016340600935433.

    Article  CAS  PubMed  Google Scholar 

  24. Stene LC, Gale EA. The prenatal environment and type 1 diabetes. Diabetologia. 2013;56(9):1888–97. doi:10.1007/s00125-013-2929-6.

    Article  CAS  PubMed  Google Scholar 

  25. Larsson K, Elding-Larsson H, Cederwall E, et al. Genetic and perinatal factors as risk for childhood type 1 diabetes. Diabetes Metab Res Rev. 2004;20(6):429–37. doi:10.1002/dmrr.506.

    Article  PubMed  Google Scholar 

  26. Hjern A, Soderstrom U. Parental country of birth is a major determinant of childhood type 1 diabetes in Sweden. Pediatr Diabetes. 2008;9(1):35–9. doi:10.1111/j.1399-5448.2007.00267.x.

    PubMed  Google Scholar 

  27. Aspberg S, Dahlquist G, Kahan T, Kallen B. Fetal and perinatal risk factors for inflammatory bowel disease. Acta paediatrica (Oslo, Norway : 1992). 2006;95(8):1001–4. doi:10.1080/08035250600573151.

    Article  Google Scholar 

  28. Roberts SE, Wotton CJ, Williams JG, Griffith M, Goldacre MJ. Perinatal and early life risk factors for inflammatory bowel disease. World J Gastroenterol. 2011;17(6):743–9. doi:10.3748/wjg.v17.i6.743.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sandberg-Bennich S, Dahlquist G, Kallen B. Coeliac disease is associated with intrauterine growth and neonatal infections. Acta paediatrica (Oslo, Norway : 1992). 2002;91(1):30–3.

    Article  CAS  Google Scholar 

  30. Ludvigsson JF, Ludvigsson J. Parental smoking and risk of coeliac disease in offspring. Scand J Gastroenterol. 2005;40(3):336–42.

    Article  PubMed  Google Scholar 

  31. Dahlquist G, Bennich SS, Kallen B. Intrauterine growth pattern and risk of childhood onset insulin dependent (type I) diabetes: population based case-control study. BMJ. 1996;313(7066):1174–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mabley JG, Pacher P, Southan GJ, Salzman AL, Szabo C. Nicotine reduces the incidence of type I diabetes in mice. J Pharmacol Exp Ther. 2002;300(3):876–81.

    Article  CAS  PubMed  Google Scholar 

  33. Bruin JE, Kellenberger LD, Gerstein HC, Morrison KM, Holloway AC. Fetal and neonatal nicotine exposure and postnatal glucose homeostasis: identifying critical windows of exposure. J Endocrinol. 2007;194(1):171–8. doi:10.1677/joe-07-0050.

    Article  CAS  PubMed  Google Scholar 

  34. Pierce BL, Tong L, Argos M, et al. Arsenic metabolism efficiency has a causal role in arsenic toxicity: mendelian randomization and gene-environment interaction. Int J Epidemiol. 2013;42(6):1862–71. doi:10.1093/ije/dyt182.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Prescott SL. Effects of early cigarette smoke exposure on early immune development and respiratory disease. Paediatr Respir Rev. 2008;9(1):3–9. doi:10.1016/j.prrv.2007.11.004 quiz 10.

    Article  PubMed  Google Scholar 

  36. Li M, Zhou Y, Feng G, Su SB. The critical role of Toll-like receptor signaling pathways in the induction and progression of autoimmune diseases. Curr Mol Med. 2009;9(3):365–74.

    Article  CAS  PubMed  Google Scholar 

  37. Cnattingius S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob Res. 2004;6(Suppl 2):S125–40. doi:10.1080/14622200410001669187.

    Article  PubMed  Google Scholar 

  38. Socialstyrelsen. Folkhälsorapport 2009. Stockholm: Socialstyrelsen; 2009. (in Swedish).

  39. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med. 2009;360(16):1646–54. doi:10.1056/NEJMra0808284.

    Article  CAS  PubMed  Google Scholar 

  40. Lindqvist R, Lendahls L, Tollbom O, Aberg H, Hakansson A. Smoking during pregnancy: comparison of self-reports and cotinine levels in 496 women. Acta Obstet Gynecol Scand. 2002;81(3):240–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Collaborators within the Dipis-study group are: Cecilia Andersson, Maria Ask, Marie Andersson-Turpinen, Rasmus Bennet, Jenny Bremer, Charlotte Brundin, Annelie Carlsson, Ulla-Marie Carlsson, Elisabeth Cedervall, Corrado Cilio, Barbro Gustavsson, Carina Hansson, Gertie Hansson, Sten Ivarsson, Berglind Jonsdottir, Björn Jönsson, Ida Jönsson, Daria La Torre, Karin Larsson, Bengt Lindberg, Barbro Lernmark, Åke Lernmark, Markus Lundgren, Kristian Lynch, Jan Neiderud, Zeliha Mestan, Anita Ramelius, Ingrid Wigheden. We thank Karin Källén, Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden, for acquisition and linking of register data. The research was supported by the Medical Faculty at Lund University and the networks SIMSAM Lund (with funding from The Swedish Research Council) and METALUND (with funding from Swedish Council for Working Life and Social Research). DiPiS is supported in part by the Swedish Research Council (Grant 14064), Swedish Childhood Diabetes Foundation, Swedish Diabetes Association, National Institutes of Health (DK26190), UMAS Fund, the Knut and Alice Wallenberg Foundation, and the Skåne County Council for Research and Development..

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical standard

The study was approved by the Ethics committee at Lund University, and is performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments. All subjects within the prospective study cohorts used have given their informed consent prior to participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Mattsson.

Additional information

Helena Elding Larsson and Lars Rylander are co-equal senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattsson, K., Jönsson, I., Malmqvist, E. et al. Maternal smoking during pregnancy and offspring type 1 diabetes mellitus risk: accounting for HLA haplotype. Eur J Epidemiol 30, 231–238 (2015). https://doi.org/10.1007/s10654-014-9985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-014-9985-1

Keywords

Navigation