Skip to main content
Log in

Next frontiers in the genetic epidemiology of Alzheimer’s disease

  • COMMENTARY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Thies W, Bleiler L. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement. 2011;7(2):208–44.

    Article  PubMed  Google Scholar 

  2. Gatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.

    Article  PubMed  Google Scholar 

  3. Bertram L, Tanzi RE. The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2012;107:79–100.

    Article  PubMed  CAS  Google Scholar 

  4. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81.

    Article  PubMed  CAS  Google Scholar 

  5. Hollingworth P, Harold D, Jones L, et al. Alzheimer’s disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry. 2011;26(8):793–802.

    Article  PubMed  Google Scholar 

  6. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  PubMed  CAS  Google Scholar 

  7. InternationalHapmapConsortium. The international HapMap project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  8. Coon KD, Myers AJ, Craig DW, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68(4):613–8.

    Article  PubMed  CAS  Google Scholar 

  9. Grupe A, Abraham R, Li Y, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 2007;16(8):865–73.

    Article  PubMed  CAS  Google Scholar 

  10. Reiman EM, Webster JA, Myers AJ, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron. 2007;54(5):713–20.

    Article  PubMed  CAS  Google Scholar 

  11. Ikram MA, Liu F, Oostra BA, et al. The GAB2 gene and the risk of Alzheimer’s disease: replication and meta-analysis. Biol Psychiatry. 2009;65(11):995–9.

    Article  PubMed  CAS  Google Scholar 

  12. Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    Article  PubMed  CAS  Google Scholar 

  13. Lambert JC, Heath S, Even G, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.

    Article  PubMed  CAS  Google Scholar 

  14. Psaty BM, Hofman A. Genome-wide association studies and large-scale collaborations in epidemiology. Eur J Epidemiol. 2010;25(8):525–9.

    Google Scholar 

  15. Seshadri S, Fitzpatrick AL, Ikram MA, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40.

    Article  PubMed  CAS  Google Scholar 

  16. Hollingworth P, Harold D, Sims R, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35.

    Article  PubMed  CAS  Google Scholar 

  17. Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41.

    Article  PubMed  CAS  Google Scholar 

  18. Morgan K. The three new pathways leading to Alzheimer’s disease. Neuropathol Appl Neurobiol. 2011;37(4):353–7.

    Article  PubMed  CAS  Google Scholar 

  19. Verhaaren BF, Vernooij MW, Koudstaal PJ, et al. Alzheimer’s disease genes and cognition in the nondemented general population. Biol Psychiatry. 2012. doi: 10.1016/j.biopsych.2012.04.009.

  20. Chen LH, Kao PY, Fan YH, et al. Polymorphisms of CR1, CLU and PICALM confer susceptibility of Alzheimer’s disease in a southern Chinese population. Neurobiol Aging. 2012;33(1):210.e1–7.

    Article  CAS  Google Scholar 

  21. Lee JH, Cheng R, Barral S, et al. Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol. 2011;68(3):320–8.

    Article  PubMed  Google Scholar 

  22. Logue MW, Schu M, Vardarajan BN, et al. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68(12):1569–79.

    Article  PubMed  Google Scholar 

  23. Ferrari R, Hardy J, Momeni P. Frontotemporal dementia: from Mendelian genetics towards genome wide association studies. J Mol Neurosci. 2011;45(3):500–15.

    Article  PubMed  CAS  Google Scholar 

  24. Schrijvers EM, Schurmann B, Koudstaal PJ, et al. Genome-wide association study of vascular dementia. Stroke. 2012;43(2):315–9.

    Article  PubMed  Google Scholar 

  25. Van Deerlin VM, Sleiman PM, Martinez-Lage M, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42(3):234–9.

    Article  PubMed  Google Scholar 

  26. Holliday EG, Maguire JM, Evans TJ, et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet. 2012;44(10):1147–51.

    Article  PubMed  CAS  Google Scholar 

  27. Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012;11(11):951–62.

    Google Scholar 

  28. 1000 Genome Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  Google Scholar 

  29. Holmes D. Mind the IGAP. Lancet Neurol. 2011;10(6):502–3.

    Article  PubMed  Google Scholar 

  30. Kiezun A, Garimella K, Do R, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet. 2012;44(6):623–30.

    Article  PubMed  CAS  Google Scholar 

  31. Jonsson T, Atwal JK, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012;488(7409):96–9.

    Article  PubMed  CAS  Google Scholar 

  32. Rucker JJ, McGuffin P. Genomic structural variation in psychiatric disorders. Dev Psychopathol. 2012;24(4):1335–44.

    Article  PubMed  Google Scholar 

  33. Brouwers N, Van Cauwenberghe C, Engelborghs S, et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry. 2012;17(2):223–33.

    Article  PubMed  CAS  Google Scholar 

  34. Rovelet-Lecrux A, Legallic S, Wallon D, et al. A genome-wide study reveals rare CNVs exclusive to extreme phenotypes of Alzheimer disease. Eur J Hum Genet. 2012;20(6):613–7.

    Article  PubMed  CAS  Google Scholar 

  35. Lambert JC, Grenier-Boley B, Harold D, et al. Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer’s disease. Mol Psychiatry. 2012. doi: 10.1038/mp.2012.14.

  36. Broer L, Koudstaal PJ, Amin N, Rivadeneira F, Uitterlinden AG, Hofman A, Oostra BA, Breteler MM, Ikram MA, van Duijn CM. Association of heat shock proteins with Parkinson’s disease. Eur J Epidemiol. 2011;26(12):933–5.

    Google Scholar 

  37. Hu X, Pickering E, Liu YC, et al. Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS ONE. 2011;6(2):e16616.

    Article  PubMed  CAS  Google Scholar 

  38. Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44(4):369–75, S1–3.

    Google Scholar 

  39. McQuillan R, Eklund N, Pirastu N, et al. Evidence of inbreeding depression on human height. PLoS Genet. 2012;8(7):e1002655.

    Article  PubMed  CAS  Google Scholar 

  40. Tan Q, Zhao JH, Li S, Kruse TA, Christensen K. Power assessment for genetic association study of human longevity using offspring of long-lived subjects. Eur J Epidemiol. 2010;25(7):501–6.

    Google Scholar 

  41. Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28.

    Article  PubMed  CAS  Google Scholar 

  42. Gallo V, Egger M, McCormack V, Farmer PB, loannidis JP, Kirsch-Volders M, Matullo G, Phillips DH, Schoket B, Stromberg U, Vermeulen R, Wild C, Porta M, Vineis P. STrengthening the reporting of observational studies in Epidemiology-Molecular Epidemiology (STROBE-ME): an extension of the STROBE statement. Eur J Epidemiol. 2011;26(10):797–810.

    Google Scholar 

  43. Ikram MA, van der Lugt A, Niessen WJ, et al. The Rotterdam Scan Study: design and update up to 2012. Eur J Epidemiol. 2011;26(10):811–24.

    Article  PubMed  Google Scholar 

  44. O’Donnell CJ, Kavousi M, Smith AV, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124(25):2855–64.

    Article  PubMed  Google Scholar 

  45. Ikram MA, Fornage M, Smith AV, et al. Common variants at 6q22 and 17q21 are associated with intracranial volume. Nat Genet. 2012;44(5):539–44.

    Article  PubMed  CAS  Google Scholar 

  46. Taal HR, St Pourcain B, Thiering E, et al. Common variants at 12q15 and 12q24 are associated with infant head circumference. Nat Genet. 2012;44(5):532–8.

    Article  PubMed  CAS  Google Scholar 

  47. Bis JC, DeCarli C, Smith AV, et al. Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat Genet. 2012;44(5):545–51.

    Article  PubMed  CAS  Google Scholar 

  48. Stein JL, Medland SE, Vasquez AA, et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet. 2012;44(5):552–61.

    Article  PubMed  CAS  Google Scholar 

  49. Fornage M, Debette S, Bis JC, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69(6):928–39.

    Article  PubMed  CAS  Google Scholar 

  50. Zou F, Carrasquillo MM, Pankratz VS, et al. Gene expression levels as endophenotypes in genome-wide association studies of Alzheimer disease. Neurology. 2010;74(6):480–6.

    Article  PubMed  CAS  Google Scholar 

  51. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6 Pt 1):805–21.

    Article  PubMed  CAS  Google Scholar 

  52. Hibar DP, Stein JL, Kohannim O, et al. Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. Neuroimage. 2011;56(4):1875–91.

    Article  PubMed  Google Scholar 

  53. Stein JL, Hua X, Lee S, et al. Voxelwise genome-wide association study (vGWAS). Neuroimage. 2010;53(3):1160–74.

    Article  PubMed  CAS  Google Scholar 

  54. Cuenco KT, Lunetta KL, Baldwin CT, et al. Association of distinct variants in SORL1 with cerebrovascular and neurodegenerative changes related to Alzheimer disease. Arch Neurol. 2008;65(12):1640–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Netherlands Organization for Health Research and Development (ZonMW) Veni-grant no. 916.13.054; CHARGE infrastructure grant no. HL105756; and NIH/NIA grant no. P30 AG10129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arfan Ikram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikram, M.A., DeCarli, C. Next frontiers in the genetic epidemiology of Alzheimer’s disease. Eur J Epidemiol 27, 831–836 (2012). https://doi.org/10.1007/s10654-012-9742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-012-9742-2

Keywords

Navigation