Skip to main content

Advertisement

Log in

The short-term effect of 24-h average and peak air pollution on mortality in Oslo, Norway

  • ENVIRONMENTAL EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Numerous epidemiological studies have shown associations between increases in outdoor air pollution and all-cause mortality as well as cardiovascular and respiratory related mortality. The majority of studies has used the routine monitoring network and thus has not been able to characterize the small-scale variation in daily averages and peak concentrations within urban settings. To address possible short term impact on mortally by air pollution we used a time-stratified case-crossover design to estimate associations of traffic-related air pollution and wood burning and daily mortality during a period of 10 years among residents above 50 years of age in Oslo, Norway. A dispersion model was used to assess short-term air pollution for daily (24-h) averages and peak concentrations of nitrogen dioxide (NO2) from exhaust and particulate matter with a diameter of 2.5 μm or less (PM2.5) from exhaust and wood-burning at residential neighbourhood level for each individual. We found an overall increased risk from exposure at the lag of 0–5 days before the day of death for both pollutants. The excess risk was highest for PM2.5 with a 2.8 % (95 % confidence interval: 1.2–4.4) increase per 10 μg per cubic meter change in daily exposure. Short-term traffic-related air pollution was associated with increased risk for mortality among individuals above 50 years of age, especially for circulatory outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42.

    Article  PubMed  CAS  Google Scholar 

  2. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006;295(10):1127–34.

    Article  PubMed  CAS  Google Scholar 

  3. Guo Y, Jia Y, Pan X, Liu L, Wichmann HE. The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Sci Total Environ. 2009;407(17):4826–30.

    Article  PubMed  CAS  Google Scholar 

  4. Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.

    Article  PubMed  CAS  Google Scholar 

  5. Peters A, Döring A, Wichmann HE, et al. Increased plasma viscosity during the 1985 air pollution episode: a link to mortality? Lancet. 1997;349:1582–7.

    Article  PubMed  CAS  Google Scholar 

  6. Madsen C, Durand KL, Nafstad P, Schwarze PE, Rønningen KS, Håheim LL. Associations between environmental exposures and serum concentrations of Clara cell protein among elderly men in Oslo, Norway. Environ Res. 2008;108(3):354–60.

    Article  PubMed  CAS  Google Scholar 

  7. Rückerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, Heinrich J, Marder V, Frampton M, Wichmann HE, Peters A. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med. 2006;173(4):432–41.

    Article  PubMed  Google Scholar 

  8. Pope CA 3rd, Verrier RL, Lovett EG, Larson AC, Raizenne ME, Kanner RE, Schwartz J, Villegas GM, Gold DR, Dockery DW. Heart rate variability associated with particulate air pollution. Am Heart J. 1999;138(5 Pt 1):890–9.

    Article  PubMed  Google Scholar 

  9. Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R. Ambient pollution and heart rate variability. Circulation. 2000;101(11):1267–73.

    Article  PubMed  CAS  Google Scholar 

  10. Bhaskaran K, Hajat S, Armstrong B, Haines A, Herrett E, Wilkinson P, Smeeth L. The effects of hourly differences in air pollution on the risk of myocardial infarction: case crossover analysis of the MINAP database. BMJ. 2011;343:d5531.

    Article  PubMed  Google Scholar 

  11. Peters A, von Klot S, Heier M, Trentinaglia I, Hörmann A, Wichmann HE. Cooperative Health Research in the Region of Augsburg Study Group. Exposure to traffic and the onset of myocardial infarction. N Engl J Med. 2004;351(17):1721–30.

    Article  PubMed  CAS  Google Scholar 

  12. Blakely T, Subramanian SV. Multilevel studies. In: Oakes JM and Kaufman JS, editors. Methods in social epidemiology. San Francisco: Jossey-Bass; 2006.

  13. Naess O, Piro FN, Nafstad P, Smith GD, Leyland AH. Air pollution, social deprivation, and mortality: a multilevel cohort study. Epidemiology. 2007;18(6):686–94.

    Article  PubMed  Google Scholar 

  14. Deguen S, Zmirou-Navier D. Social inequalities resulting from health risks related to ambient air quality—a European review. Eur J Public Health. 2010;20(1):27–35.

    Article  PubMed  Google Scholar 

  15. Serinelli M, Vigotti MA, Stafoggia M, Berti G, Bisanti L, Mallone S, Pacelli B, Tessari R, Forastiere F. Particulate matter and out-of-hospital coronary deaths in eight Italian cities. Occup Environ Med. 2010;67(5):301–6.

    Article  PubMed  Google Scholar 

  16. Janes H, Sheppard L, Lumley T. Case-crossover analyses of air pollution exposure data: referent selection strategies and their implications for bias. Epidemiology. 2005;16(6):717–26.

    Article  PubMed  Google Scholar 

  17. Basu R, Dominici F, Samet JM. Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods. Epidemiology. 2005;16:58–66.

    Article  PubMed  Google Scholar 

  18. Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991;133(2):144–53.

    PubMed  CAS  Google Scholar 

  19. Peters A, von Klot S, Heier M, Trentinaglia I, Cyrys J, Hörmann A, Hauptmann M, Wichmann HE, Löwel H. Particulate air pollution and nonfatal cardiac events. Part I. Air pollution, personal activities, and onset of myocardial infarction in a case-crossover study. Res Rep Health Eff Inst. 2005;124:1–66.

    PubMed  CAS  Google Scholar 

  20. Neas LM, Schwartz J, Dockery D. A case-crossover analysis of air pollution and mortality in Philadelphia. Environ Health Perspect. 1999;107(8):629–31.

    Article  PubMed  CAS  Google Scholar 

  21. Sunyer J, Schwartz J, Tobías A, Macfarlane D, Garcia J, Antó JM. Patients with chronic obstructive pulmonary disease are at increased risk of death associated with urban particle air pollution: a case-crossover analysis. Am J Epidemiol. 2000;151(1):50–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kwon HJ, Cho SH, Nyberg F, Pershagen G. Effects of ambient air pollution on daily mortality in a cohort of patients with congestive heart failure. Epidemiology. 2001;12(4):413–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zeka A, Zanobetti A, Schwartz J. Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med. 2005;62(10):718–25.

    Article  PubMed  CAS  Google Scholar 

  24. Forastiere F, Stafoggia M, Tasco C, Picciotto S, Agabiti N, Cesaroni G, Perucci CA. Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. Am J Ind Med. 2007;50(3):208–16.

    Article  PubMed  Google Scholar 

  25. Maynard D, Coull BA, Gryparis A, Schwartz J. Mortality risk associated with short-term exposure to traffic particles and sulfates. Envrion Health Perspect. 2007;115(5):751–5.

    Article  CAS  Google Scholar 

  26. Stafoggia M, Schwartz J, Forastiere F. SISTI Group. Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. Am J Epidemiol. 2008;167(12):1476–85.

    Article  PubMed  CAS  Google Scholar 

  27. Guo Y, Barnett AG, Zhang Y, Tong S, Yu W, Pan X. The short-term effect of air pollution on cardiovascular mortality in Tianjin, China: comparison of time series and case-crossover analyses. Sci Total Environ. 2010;409(2):300–6.

    Article  PubMed  CAS  Google Scholar 

  28. Oftedal B, Walker SE, Gram F, McInnes H, Nafstad P. Modelling long-term averages of local ambient air pollution in Oslo, Norway: evaluation of nitrogen dioxide, PM10 and PM2.5. Int J Environ Pollut. 2009;36(1–3):110–26.

    Article  CAS  Google Scholar 

  29. Basu R, Samet JM. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev. 2002;24:190–202.

    Article  PubMed  Google Scholar 

  30. The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet. 1997;349(9062):1341–6.

    Article  Google Scholar 

  31. Madsen C, Nafstad P. Associations between environmental exposure and blood pressure among participants in the Oslo Health Study (HUBRO). Eur J Epidemiol. 2006;21(7):485–91.

    Article  PubMed  Google Scholar 

  32. Lu Y, Zeger SL. On the equivalence of case-crossover and time series methods in environmental epidemiology. Biostatistics. 2007;8(2):337–44.

    Article  PubMed  Google Scholar 

  33. Mittleman MA. Optimal referent selection strategies in case-crossover studies: a settled issue. Epidemiology. 2005;16:715–6.

    Article  PubMed  Google Scholar 

  34. Lumley T, Levy D. Bias in the case-crossover design: implications for studies of air pollution. Environmetrics. 2000;11:689–704.

    Article  CAS  Google Scholar 

  35. Bateson TF, Schwartz J. Control for seasonal variation and time trend in case-crossover studies of acute effects of environmental exposures. Epidemiology. 1999;10(5):539–44.

    Article  PubMed  CAS  Google Scholar 

  36. Lützenkirchen S, Lutnæs G, 2005, Luftkvaliteten i Oslo. Status 2004. [Air quality in Oslo. Status 2004], (only in Norwegian). Oslo City, Health and Wealth Administration. 2004. http://www.helse-og-velferdsetaten.oslo.kommune.no/.

  37. Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh E, ten Brink HM, Lutz M, Bruckmann P, Straehl P, Schneider J. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ. 2004;38:6547–55.

    Article  CAS  Google Scholar 

  38. Kupiainen KK, Tervahattu H, Räisänen M, Mäkelä T, Aurela M, Hillamo R. Size and composition of airborne particles from pavement wear, tires, and tractor sanding. Environ Sci Technol. 2005;39:699–706.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson HR, Atkinson RW, Peacock JL, Sweeting MJ, Marston L. Ambient particulate matter and health effects: publication bias in studies of short-term associations. Epidemiology. 2005;16:155–63.

    Article  PubMed  Google Scholar 

  40. Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Atkinson R, Le Tertre A, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Aranguez Ruiz E, Katsouyanni K. The temporal pattern of mortality responses to air pollution: a multicity assessment of mortality displacement. Epidemiology. 2002;13:87–93.

    Article  PubMed  Google Scholar 

  41. Brook RD. Cardiovascular effects of air pollution. Clin Sci. 2008;115:175–87.

    Article  PubMed  CAS  Google Scholar 

  42. Schnelle-Kreis J, Küpper U, Sklorz M, Cyrys J, Briedé JJ, Peters AA, Zimmermann R. Daily measurement of organic compounds in ambient particulate matter in Augsburg, Germany: new aspects on aerosol sources and aerosol related health effects. Biomarkers. 2009;14(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  43. Møller P, Loft S. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect. 2010;118(8):1126–36.

    Article  PubMed  Google Scholar 

  44. Environmental Protection Agency. Air quality criteria for particulate matter, vol. III of EPA/600/P-95/001CF, National Center for Environmental Assessment, Research Triangle Park, NC, USA, 1996.

  45. Ferin F, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 1992;6(5):535–42.

    PubMed  CAS  Google Scholar 

  46. Liu HH, Wu YC, Chen HL. Production of ozone and reactive oxygen species after welding. Arch Environ Contam Toxicol. 2007;53(4):513–8.

    Article  PubMed  CAS  Google Scholar 

  47. Ostro B, Tobias A, Querol X, Alastuey A, Amato F, Pey J, Pérez N, Sunyer J. The effects of particulate matter sources on daily mortality: A case-crossover study of Barcelona, Spain. Environ Health Perspect. 2011 [Epub ahead of print].

  48. Becker S, Dailey LA, Soukup JM, Grambow SC, Devlin RB, Huang YC. Environ Health Perspect. 2005;113(8):1032–8.

    Google Scholar 

  49. Nakayama Wong LS, Aung HH, Lamé MW, Wegesser TC, Wilson DW. Fine particulate matter from urban ambient and wildfire sources from California’s San Joaquin Valley initiate differential inflammatory, oxidative stress, and zenobiotic responses in human bronchial epithelial cells. Toxicol In Vitro. 2011 [Epub ahead of print].

  50. Kocbach A, Namork E, Schwarze PE. Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology. 2008;247(2–3):123–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Norwegian Public Road Administration. Christian Madsen was also funded by the Norwegian Research Council (Grant Number 196102/V40). Statistics Norway linked census data with the death registry. We would also thank the Norwegian Surveillance System for Communicable Diseases (MSIS) for providing data on seasonal influenza.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Madsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madsen, C., Rosland, P., Hoff, D.A. et al. The short-term effect of 24-h average and peak air pollution on mortality in Oslo, Norway. Eur J Epidemiol 27, 717–727 (2012). https://doi.org/10.1007/s10654-012-9719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-012-9719-1

Keywords

Navigation